Hard magnetic properties of (001) oriented L10-FePd nanoparticles formed at 773 K

Kazuhisa Sato, Bo Bian, Yoshihiko Hirotsu

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Two-dimensionally dispersed 10 nm-sized Fe/Pd and Fe/Pt particles (nanoparticles) with orientations have been fabricated with the same condition using an electron-beam evaporation technique. Heat treatments at temperatures above 773 K lead to a formation of L10-type (CuAu I-type) FePd and FePt ordered alloy particles with sizes as small as 10 nm. In the case of FePt nanoparticles, coercivity started to increase at 873 K, while in the case of FePd at 773 K. Moreover, in most of the FePd nanoparticles, their c-axes oriented normal to the film plane and the perpendicular coercivity reached as high as 1.2 kOe after annealing at 773 K for 1 h. This method can be applied to fabricate ultra-high density magneto-optical or vertical recording media under low annealing temperatures for the L10-structure formation especially in the Fe-Pd system.

Original languageEnglish
Pages (from-to)L1121-L1123
JournalJapanese journal of applied physics
Volume39
Issue number11 B
DOIs
Publication statusPublished - 2000 Nov 15
Externally publishedYes

ASJC Scopus subject areas

  • Engineering(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Hard magnetic properties of (001) oriented L10-FePd nanoparticles formed at 773 K'. Together they form a unique fingerprint.

Cite this