Haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26: X-ray crystallographic studies of dehalogenation of brominated substrates

Victor A. Streltsov, Zbyněk Prokop, Jiří Damborský, Yuji Nagata, Aaron Oakley, Matthew C.J. Wilce

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

The haloalkane dehalogenases are detoxifying enzymes that convert a broad range of halogenated substrates to the corresponding alcohols. Complete crystal structures of haloalkane dehalogenase from Sphingomonas paucimobilis UT26 (LinB), and complexes of LinB with 1,2-propanediol/1-bromopropane-2-ol and 2-bromo-2-propene-1-ol, products of debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, were determined from 1.8 Å resolution X-ray diffraction data. Published structures of native LinB and its complex with 1,3-propanediol [Marek et al. (2000) Biochemistry 39, 14082-14086] were reexamined. The full and partial debromination of 1,2-dibromopropane and 2,3-dibromopropene, respectively, conformed to the observed general trend that the sp3-hybridized carbon is the predominant electrophilic site for the SN2 bimolecular nucleophilic substitution in dehalogenation reaction. The 2-bromo-2-propene-1-ol product of 2,3-dibromopropene dehalogenation in crystal was positively identified by the gas chromatography-mass spectroscopy (GC - MS) technique. The 1,2-propanediol and 1-bromopropane-2-ol products of 1,2-dibromopropane dehalogenation in crystal were also supported by the GC-MS identification. Comparison of native LinB with its complexes showed high flexibility of residues 136-157, in particular, Asp146 and Glu147, from the cap domain helices α4 and α5′. Those residues were shifted mainly in direction toward the ligand molecules in the complex structures. It seems the cap domain moves nearer to the core squeezing substrate into the active center closer to the catalytic triad. This also leads to slight contraction of the whole complex structures. The flexibility detected by crystallographic analysis is in remarkable agreement with flexibility observed by molecular dynamic simulations.

Original languageEnglish
Pages (from-to)10104-10112
Number of pages9
JournalBiochemistry
Volume42
Issue number34
DOIs
Publication statusPublished - 2003 Sep 2

ASJC Scopus subject areas

  • Biochemistry

Fingerprint Dive into the research topics of 'Haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26: X-ray crystallographic studies of dehalogenation of brominated substrates'. Together they form a unique fingerprint.

Cite this