Growth of barrier type anodic film on magnesium in ethylene glycol-water mixed electrolytes containing fluoride and phosphate

Khurram Shahzad, Chunyu Zhu, Etsushi Tsuji, Yoshitaka Aoki, Shinji Nagata, Hiroki Habazaki

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


In this study, we report the formation of barrier-type anodic films on magnetron-sputtered magnesium films at a constant current density of 10 A m-2 in ethylene glycol (EG)-H2O electrolytes containing 0.1 mol dm-3 ammonium fluoride and 0.1 mol dm-3 dipotassium hydrogen phosphate. The growth efficiency is close to 100% up to 10 vol% H2O, but decreases to 52% in the EG-free aqueous electrolyte. Even at such a low efficiency in the aqueous electrolyte a uniform barrier-type anodic film with flat and parallel metal/film and film/electrolyte interfaces is developed over 100 V. This is contrast to the non-uniform film growth and low breakdown voltage in the phosphate-free aqueous electrolyte containing ammonium fluoride. The anodic films appear to be amorphous regardless of H2O concentration in the phosphate-containing electrolytes, and consist of phosphate-incorporated oxy fluoride. The phosphate incorporation is suppressed by an increase in H2O concentration. In addition, the anodic films consist of two layers with an inner layer containing less amount of phosphate. The outer layer is probably formed at the film/electrolyte interface by the migration of Mg2+ ions outwards, while the inner layer is formed at the metal/film interface. The film formation at the former interface even in the aqueous electrolyte at low efficiency is likely to contribute to the formation of barrier films, not porous anodic films.

Original languageEnglish
Pages (from-to)1552-1559
Number of pages8
JournalMaterials Transactions
Issue number9
Publication statusPublished - 2016


  • Anodic oxide
  • Anodizing
  • Barrier film
  • Magnesium

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Growth of barrier type anodic film on magnesium in ethylene glycol-water mixed electrolytes containing fluoride and phosphate'. Together they form a unique fingerprint.

Cite this