Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings.

H. Takahashi, N. Fujii, M. Kamada, A. Higashitani, Y. Yamazaki, A. Kobayashi, M. Takano, S. Yamasaki, T. Sakata, H. Mizuno, Y. Kaneko, T. Murata, S. Kamigaichi, S. Aizawa, I. Yoshizaki, T. Shimazu, K. Fukui

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We examined the effect of microgravity on the peg formation of cucumber seedlings for clarifying the mechanism of gravimorphogenesis in cucurbitaceous plants. The spaceflight experiments verified that gravity controls the formation of peg, hypocotyl hook and growth orientation of cucumber seedlings. Space-grown cucumber developed a peg on each side of the transition zone of the hypocotyl and root, indicating that on the ground peg formation is regulated negatively by gravity (Takahashi et al. 2000). It was found that the auxin-regulated gene, CS-IAA1, was strongly expressed in the transition zone where peg develops (Fujii et al. 2000). In the seedlings grown horizontally on the ground, CS-IAA1 transcripts were much abundant on the lower side of the transition zone, but no such differential expression of CS-IAA1 was observed in the space-grown cucumber (Kamada et al. 2000). These results imply that gravity plays a role in peg formation through auxin redistribution. By the negative control, peg formation on the upper side of the transition zone in the horizontally growing seedlings might be suppressed due to a reduction in auxin concentration. The threshold theory of auxin concentration accounted for the new concept, negative control of morphogenesis by gravity (Kamada et al. 2000). Anatomical studies have shown that there exists the target cells destined to be a peg and distinguishable at the early stage of the growth. Ultra-structural analysis suggested that endoplasmic reticulum develops well in the cells of the future peg. Furthermore, it was found that reorganization of cortical microtubules is required for the change in cell growth polarity in the process of peg formation. The spaceflight experiment with cucumber seedlings also suggested that in microgravity positive hydrotropic response of roots occurred without interference by gravitropic response (Takahashi et al. 1999b). Thus, this spaceflight experiment together with the ground-based studies has shown that cucumber seedling is an ideal for the study of gravimorphogenesis, hydrotropism and their interaction. Although peg formation is seen specifically in cucurbitaceous seedlings, it involves graviperception, auxin transport and redistribution and cytoskeletal modification for controlling cell growth polarity. This system could be a useful model for studying important current issues in plant biology.

Original languageEnglish
Pages (from-to)64-74
Number of pages11
JournalBiological sciences in space = Uchū seibutsu kagaku
Volume14
Issue number2
DOIs
Publication statusPublished - 2000 Jun

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings.'. Together they form a unique fingerprint.

  • Cite this

    Takahashi, H., Fujii, N., Kamada, M., Higashitani, A., Yamazaki, Y., Kobayashi, A., Takano, M., Yamasaki, S., Sakata, T., Mizuno, H., Kaneko, Y., Murata, T., Kamigaichi, S., Aizawa, S., Yoshizaki, I., Shimazu, T., & Fukui, K. (2000). Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings. Biological sciences in space = Uchū seibutsu kagaku, 14(2), 64-74. https://doi.org/10.2187/bss.14.64