Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection

Haixin Chang, Longhua Tang, Ying Wang, Jianhui Jiang, Jinghong Li

    Research output: Contribution to journalArticlepeer-review

    794 Citations (Scopus)


    Combining nanomaterials and biomolecule recognition units is promising in developing novel clinic diagnostic and protein analysis techniques. In this work, a highly sensitive and specific fluorescence resonance energy transfer (FRET) aptasensor for thrombin detection is developed based on the dye labeled aptamer assembled graphene. Due to the noncovalent assembly between aptamer and graphene, fluorescence quenching of the dye takes place because of FRET. The addition of thrombin leads to the fluorescence recovery due to the formation of quadruplex-thrombin complexes which have weak affinity to graphene and keep the dyes away from graphene surface. Because of the high fluorescence quenching efficiency, unique structure, and electronic properties of graphene, the graphene aptasensor exhibits extraordinarily high sensitivity and excellent specificity in both buffer and blood serum. A detection limit as low as 31.3 pM is obtained based on the graphene FRET aptasensor, which is two orders magnitude lower than those of fluorescent sensors based on carbon nanotubes. The excellent performance of FRET aptasensor based on graphene will also be ascribed to the unique structure and electronic properties of graphene.

    Original languageEnglish
    Pages (from-to)2341-2346
    Number of pages6
    JournalAnalytical Chemistry
    Issue number6
    Publication statusPublished - 2010 Mar 15

    ASJC Scopus subject areas

    • Analytical Chemistry


    Dive into the research topics of 'Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection'. Together they form a unique fingerprint.

    Cite this