Granular compaction and the topology of pore deformation

Mohammad Saadatfar, Hiroshi Takeuchi, Maryam Hanifpour, Vanessa Robins, Nicolas Francois, Yasuaki Hiraoka

Research output: Contribution to journalConference articlepeer-review


The mechanism of crystallisation in highly dissipative materials such as foams or granular materials is still widely unknown. In macroscopic granular materials high levels of energy need to be injected to overcome the natural propensity of these dissipative materials to form amorphous structures [1, 2]. The transition from disordered to ordered packings in such systems triggers a wide range of geometrical, topological and mechanical changes at multi length scales [3]. Formation of cavities and patterns by aggregates of grains and their evolution during this transition requires a complete topological description of the system. Here, crystallisation of three-dimensional packings of frictional spheres is studied at the grain scale with x-ray tomography. Using a novel and powerful topological tool, Persistent Homology, we describe the complete formation process of perfect tetrahedral and octahedral patterns: the two building blocks of FCC and HCP crystalline arrangements. Additionally we present possible and allowable deformations of these components that accurately reproduce the main topological features of the system. These results give new insights into the crystallisation of these highly dissipative materials.

Original languageEnglish
Article number16009
JournalEPJ Web of Conferences
Publication statusPublished - 2017 Jun 30
Event8th International Conference on Micromechanics on Granular Media, Powders and Grains 2017 - Montpellier, France
Duration: 2017 Jul 32017 Jul 7

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Granular compaction and the topology of pore deformation'. Together they form a unique fingerprint.

Cite this