TY - JOUR
T1 - Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations
AU - De Bouard, Anne
AU - Hayashi, Nakao
AU - Kato, Keiichi
N1 - Publisher Copyright:
© 2016 L'Association Publications de l'Institut Henri Poincaré
PY - 1995/11/1
Y1 - 1995/11/1
N2 - This paper is concerned with regularizing effects of solutions to the (generalized) Korteweg-de Vries equation {∂tu+∂x 3u=λup−1∂xu,(t,x)∈ℝ×ℝ,u(0)=ϕ,x∈ℝ, and nonlinear Schrödinger equations in one space dimension {i∂tu+12∂x 2u=G(u,u¯),(t,x)∈ℝ×ℝ,u(0)=ψ,x∈ℝ, where p is an integer satisfying p ≥ 2, λ ∊ ℂ and G is a polynomial of (u,u¯). We prove that if the initial function ϕ is in a Gevrey class of order 3 defined in Section 1, then there exists a positive time T such that the solution of (gKdV) is analytic in space variable for t ∊ [−T, T]\{0}, and if the initial function ψ in a Gevrey class of order 2, then there exists a positive time T such that the solution of (NLS) is analytic in space variable for t ∊ [−T, T]\{0}.
AB - This paper is concerned with regularizing effects of solutions to the (generalized) Korteweg-de Vries equation {∂tu+∂x 3u=λup−1∂xu,(t,x)∈ℝ×ℝ,u(0)=ϕ,x∈ℝ, and nonlinear Schrödinger equations in one space dimension {i∂tu+12∂x 2u=G(u,u¯),(t,x)∈ℝ×ℝ,u(0)=ψ,x∈ℝ, where p is an integer satisfying p ≥ 2, λ ∊ ℂ and G is a polynomial of (u,u¯). We prove that if the initial function ϕ is in a Gevrey class of order 3 defined in Section 1, then there exists a positive time T such that the solution of (gKdV) is analytic in space variable for t ∊ [−T, T]\{0}, and if the initial function ψ in a Gevrey class of order 2, then there exists a positive time T such that the solution of (NLS) is analytic in space variable for t ∊ [−T, T]\{0}.
UR - http://www.scopus.com/inward/record.url?scp=85011573784&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85011573784&partnerID=8YFLogxK
U2 - 10.1016/S0294-1449(16)30148-2
DO - 10.1016/S0294-1449(16)30148-2
M3 - Article
AN - SCOPUS:85011573784
VL - 12
SP - 673
EP - 725
JO - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
JF - Annales de l'Institut Henri Poincare. Annales: Analyse Non Lineaire/Nonlinear Analysis
SN - 0294-1449
IS - 6
ER -