Geoneutrinos from the rock overburden at SNO+

V. Strati, S. A. Wipperfurth, M. Baldoncini, W. F. McDonough, S. Gizzi, F. Mantovani

Research output: Contribution to journalConference articlepeer-review

Abstract

SNOLAB is one of the deepest underground laboratory in the world with an overburden of 2092 m. The SNO+ detector is designed to achieve several fundamental physics goals as a low-background experiment, particularly measuring the Earth's geoneutrino flux. Here we evaluate the effect of the 2 km overburden on the predicted crustal geoneutrino signal at SNO+. A refined 3D model of the 50 χ 50 km upper crust surrounding the detector and a full calculation of survival probability are used to model the U and Th geoneutrino signal. Comparing this signal with that obtained by placing SNO+ at sea level, we highlight a 1.4+1.8 -0.9 TNU signal difference, corresponding to the ∼5% of the total crustal contribution. Finally, the impact of the additional crust extending from sea level up to ∼300 m was estimated.

Original languageEnglish
Article number012020
JournalJournal of Physics: Conference Series
Volume1342
Issue number1
DOIs
Publication statusPublished - 2020 Jan 20
Event15th International Conference on Topics in Astroparticle and Underground Physics, TAUP 2017 - Sudbury, Canada
Duration: 2017 Jun 242017 Jun 28

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Geoneutrinos from the rock overburden at SNO+'. Together they form a unique fingerprint.

Cite this