TY - GEN

T1 - Generalization of complexity oscillations in infinite sequences

AU - Liu, Chen Guang

AU - Yamazaki, Takeshi

AU - Tanaka, Kazuyuki

PY - 2008/12/22

Y1 - 2008/12/22

N2 - The C-oscillation due to Martin-Löf shows that {α|∀n[C(a up harpoon right n) ≥ n -O(1)]} = φ, which also follows {α|∀n[K(α up harpoon right n) ≥n + K(n) - O(1)]} = φ. By generalizing them, we show that there does not exist a real a such that ∀n (K (α up harpoon right n) ≥ n + λK(n) - O(1))for any λ > 0.

AB - The C-oscillation due to Martin-Löf shows that {α|∀n[C(a up harpoon right n) ≥ n -O(1)]} = φ, which also follows {α|∀n[K(α up harpoon right n) ≥n + K(n) - O(1)]} = φ. By generalizing them, we show that there does not exist a real a such that ∀n (K (α up harpoon right n) ≥ n + λK(n) - O(1))for any λ > 0.

UR - http://www.scopus.com/inward/record.url?scp=57649221687&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57649221687&partnerID=8YFLogxK

U2 - 10.1109/ICNC.2008.915

DO - 10.1109/ICNC.2008.915

M3 - Conference contribution

AN - SCOPUS:57649221687

SN - 9780769533049

T3 - Proceedings - 4th International Conference on Natural Computation, ICNC 2008

SP - 299

EP - 303

BT - Proceedings - 4th International Conference on Natural Computation, ICNC 2008

T2 - 4th International Conference on Natural Computation, ICNC 2008

Y2 - 18 October 2008 through 20 October 2008

ER -