Fundamental wave amplitude difference imaging for detection and characterization of embedded cracks

Sylvain Haupert, Yoshikazu Ohara, Ewen Carcreff, Guillaume Renaud

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

An ultrasonic technique for imaging nonlinear scatterers, such as partially-closed cracks, buried in a medium has been recently proposed. The method called fundamental wave amplitude difference (FAD)consists of a sequence of acquisitions with different subsets of elements for each line of the image. An image revealing nonlinear scatterers in the medium is reconstructed line by line by subtracting the responses measured with the subsets of elements from the response obtained with all elements transmitting. In order to get a better insight of the capabilities of FAD, two metallic samples having a fatigue or thermal crack are inspected by translating the probe with ultrasonic beam perpendicular (i.e. parallel)to the crack direction which is the most (i.e. less)favorable case. Each time, the responses of the linear scatterers (i.e. conventional image)and nonlinear scatterers (i.e. FAD image)are compared in term of intensity and spatial repartition. FAD exhibits higher detection specificity of the crack with a better contrast than conventional ultrasound imaging. Moreover, we observe that both methods give complementary results as nonlinear and linear scatterers are mostly not co-localized. In addition, we show experimentally that FAD resolution in elevation and lateral follows the same rule as the theoretical resolution of conventional ultrasonic technique. Finally, we report that FAD gives the possibility to perform parametric studies which let the opportunity to address the physical mechanisms causing the distortion of the signal. FAD is a promising and reliable tool which can be directly implemented on a conventional open scanner ultrasound device for real-time imaging. This might contribute to its fast and wide spread in the industry.

Original languageEnglish
Pages (from-to)132-139
Number of pages8
JournalUltrasonics
Volume96
DOIs
Publication statusPublished - 2019 Jul

Keywords

  • Amplitude modulation
  • Fatigue crack
  • Fundamental amplitude subtraction
  • Fundamental wave amplitude difference (FAD)
  • Nonlinear scatterers
  • Phased array
  • Thermal crack
  • Ultrasonic imaging

ASJC Scopus subject areas

  • Acoustics and Ultrasonics

Fingerprint Dive into the research topics of 'Fundamental wave amplitude difference imaging for detection and characterization of embedded cracks'. Together they form a unique fingerprint.

Cite this