Functional expression of a proton-coupled organic cation (H+/OC) antiporter in human brain capillary endothelial cell line hCMEC/D3, a human blood-brain barrier model

Keita Shimomura, Takashi Okura, Sayaka Kato, Pierre Olivier Couraud, Jean Michel Schermann, Tetsuya Terasaki, Yoshiharu Deguchi

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Background: Knowledge of the molecular basis and transport function of the human blood-brain barrier (BBB) is important for not only understanding human cerebral physiology, but also development of new central nervous system (CNS)-acting drugs. However, few studies have been done using human brain capillary endothelial cells, because human brain materials are difficult to obtain. The purpose of this study is to clarify the functional expression of a proton-coupled organic cation (H+/OC) antiporter in human brain capillary endothelial cell line hCMEC/D3, which has been recently developed as an in vitro human BBB model.Methods: Diphenhydramine, [3H]pyrilamine and oxycodone were used as cationic drugs that proved to be H+/OC antiporter substrates. The in vitro uptake experiments by hCMEC/D3 cells were carried out under several conditions.Results: Diphenhydramine and [3H]pyrilamine were both transported into hCMEC/D3 cells in a time- and concentration-dependent manner with Km values of 59 μM and 19 μM, respectively. Each inhibited uptake of the other in a competitive manner, suggesting that a common mechanism is involved in their transport. The diphenhydramine uptake was significantly inhibited by amantadine and quinidine, but not tetraethylammonium and 1-methyl-4-phenylpyridinium (substrates for well-known organic cation transporters). The uptake was inhibited by metabolic inhibitors, but was insensitive to extracellular sodium and membrane potential. Further, the uptake was increased by extracellular alkalization and intracellular acidification. These transport properties are completely consistent with those of previously characterized H+/OC antiporter in rat BBB.Conclusions: The present results suggest that H+/OC antiporter is functionally expressed in hCMEC/D3 cells.

Original languageEnglish
Article number8
JournalFluids and Barriers of the CNS
Volume10
Issue number1
DOIs
Publication statusPublished - 2013 Jan 26

Keywords

  • Active transport
  • Diphenhydramine
  • HCMEC/D3 cells
  • Human BBB model cell
  • Human blood-brain barrier
  • Organic cation transporter
  • Oxycodone
  • Proton-coupled organic cation antiporter
  • Pyrilamine
  • Real-time PCR
  • Transport function

ASJC Scopus subject areas

  • Neurology
  • Developmental Neuroscience
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Functional expression of a proton-coupled organic cation (H<sup>+</sup>/OC) antiporter in human brain capillary endothelial cell line hCMEC/D3, a human blood-brain barrier model'. Together they form a unique fingerprint.

  • Cite this