Frequency-domain iterative parallel interference cancellation for multicode spread-spectrum MIMO multiplexing

Akinori Nakajima, Deepshikha Garg, Fumiyuki Adachi

Research output: Contribution to journalArticlepeer-review


Very high-speed data services are demanded in the next generation wireless systems. However, the available bandwidth is limited. The use of multi-input multi-output (MIMO) multiplexing can increase the transmission rate without bandwidth expansion. For high-speed data transmission, however, the channel becomes severely frequency-selective and the achievable bit error rate (BER) performance degrades. In our previous work, we proposed the joint use of iterative frequency-domain parallel interference cancellation (PIC) and two-dimensional (2D) MMSE-FDE for the non-spread single-carrier (SC) transmission in a frequency-selective fading channel. The joint use of PIC and 2D MMSE-FDE can effectively suppress the inter-path interference (IPI) and the inter-code interference (ICI), resulting from the channel frequency-selectivity, and the interference from other antennas simultaneously. An iterative PIC with 2D MMSE-FDE has a high computational complexity. In this paper, to well suppress the interference from other antennas while reducing the computational complexity, we propose to replace 2D MMSE-FDE by ID MMSE-FDE except for the initial iteration stage and to use multicode spread-spectrum (SS) transmission instead of the non-spread SC transmission. The BER performance of the proposed scheme in a frequency-selective Rayleigh fading channel is evaluated by computer simulation to show that the proposed scheme can basically match the BER performance of 2D MMSE-FDE with lower complexity.

Original languageEnglish
Pages (from-to)1531-1539
Number of pages9
JournalIEICE Transactions on Communications
Issue number5
Publication statusPublished - 2008
Externally publishedYes


  • Jrequency-domain iterative PIC
  • MIMU multiplexing
  • Mobile communication
  • Spread-spectrum

ASJC Scopus subject areas

  • Software
  • Computer Networks and Communications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Frequency-domain iterative parallel interference cancellation for multicode spread-spectrum MIMO multiplexing'. Together they form a unique fingerprint.

Cite this