Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap

C. P. Wang, X. J. Liu, Y. Takaku, Ikuo Ohnuma, R. Kainuma, K. Ishida

Research output: Contribution to journalArticlepeer-review

72 Citations (Scopus)

Abstract

The effects of alloying elements on the macroscopic morphologies in Cu-Fe base alloys were experimentally investigated. It was found that macroscopic homogeneity can be achieved by the addition of Mn, Ni, Al, or Co in the Cu-Fe base alloys, while the core-type macroscopic morphologies with Cu-rich or Fe-rich cores, which are radially separated as two layers in the inner and outer parts of the ingot solidified in the cast-iron mold, were formed by the addition of C, Cr, Mo, Nb, Si, or V. It is shown that the formation of the core-type macroscopic morphology is strongly connected with the existence of a stable miscibility gap of the liquid phase in the Cu-Fe base alloy due to the addition of alloying elements. The liquid phase with less volume fraction always forms the center part. This result can be explained by a mechanism that the minor droplets as the second phase are forced to move into the thermal center due to Marangoni motion, which is caused by the temperature dependence of interfacial energy between two liquid phases.

Original languageEnglish
Pages (from-to)1243-1253
Number of pages11
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume35 A
Issue number4
DOIs
Publication statusPublished - 2004 Apr

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap'. Together they form a unique fingerprint.

Cite this