Flow method for rapidly producing barium hexaferrite particles in supercritical water

Yukiya Hakuta, Tadafumi Adschiri, Toshiyuki Suzuki, Toshihiro Chida, Kazuei Seino, Kunio Arai

Research output: Contribution to journalArticlepeer-review

89 Citations (Scopus)


We propose a flow method to produce barium hexaferrite (BaO·6Fe2O3) particles with hydrothermal crystallization in supercritical water. Aqueous iron(III) and barium nitrate solution at room temperature was pressurized to 30 MPa and then mixed with potassium hydroxide solution (OH:NO3 = 4) at the same conditions to generate metal hydroxides. This mixture was then rapidly heated to 400°C by mixing with supercritical water and then fed into a tubular reactor. Residence time was ∼1 min. The reaction was terminated by cooling at the exit of the reactor. The Ba:Fe mole ratio was varied over a range of 0.1-2. When the Ba:Fe ratio was ∼1/12, which is the stoichiometric ratio for BaO·6Fe2O3, the main products were α-Fe2O3. However, for the case of Ba:Fe > 0.5, fine particles of single-phase BaO·6Fe2O3 were produced. Batch experiments (380°C, 30 MPa) at Ba:Fe = 0.5 in supercritical water at a reaction time of 10 min produced a mixture of α-Fe2O3 and BaO·6Fe2O3. This product transformed to the equilibrium phase, BaO·2Fe2O3, in 4 h as the reaction time increased, which suggests that the BaO·6Fe2O3 that formed in supercritical water with our proposed flow method under nonstoichiometric conditions was an intermediate but stable product. Furthermore, the nonstoichiometric and nonequilibrium (dynamic) conditions are important for producing single-phase BaO·6Fe2O3 particles. The single-phase particles are highly stable and can be produced continuously in a reaction time of <1 min.

Original languageEnglish
Pages (from-to)2461-2464
Number of pages4
JournalJournal of the American Ceramic Society
Issue number9
Publication statusPublished - 1998 Sept

ASJC Scopus subject areas

  • Ceramics and Composites
  • Materials Chemistry


Dive into the research topics of 'Flow method for rapidly producing barium hexaferrite particles in supercritical water'. Together they form a unique fingerprint.

Cite this