Abstract
We report the first detection of radio polarization of a gamma-ray burst (GRB) afterglow with the first intensive combined use of telescopes in the millimeter and submillimeter ranges for GRB 171205A. The linear polarization degree in the millimeter band at the subpercent level (0.27% 0.04%) is lower than those observed in late-time optical afterglows (weighted average of ∼1%). The Faraday depolarization by nonaccelerated, cool electrons in the shocked region is one of the possible mechanisms for the low value. This scenario requires a total energy that is larger by a factor of ∼10 than ordinary estimates without considering nonaccelerated electrons. The polarization position angle varies by at least 20 across the millimeter band, which is not inconsistent with this scenario. This result indicates that polarimetry in the millimeter and submillimeter ranges is a unique tool for investigating GRB energetics, and coincident observations with multiple frequencies or bands would provide more accurate measurements of the nonaccelerated electron fraction.
Original language | English |
---|---|
Article number | L58 |
Journal | Astrophysical Journal Letters |
Volume | 884 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2019 Oct 20 |
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Access to Document
Other files and links
Fingerprint
Dive into the research topics of 'First Detection of Radio Linear Polarization in a Gamma-Ray Burst Afterglow'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
First Detection of Radio Linear Polarization in a Gamma-Ray Burst Afterglow. / Urata, Yuji; Toma, Kenji; Huang, Kuiyun et al.
In: Astrophysical Journal Letters, Vol. 884, No. 2, L58, 20.10.2019.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - First Detection of Radio Linear Polarization in a Gamma-Ray Burst Afterglow
AU - Urata, Yuji
AU - Toma, Kenji
AU - Huang, Kuiyun
AU - Asada, Keiichi
AU - Nagai, Hiroshi
AU - Takahashi, Satoko
AU - Petitpas, Glen
AU - Tashiro, Makoto
AU - Yamaoka, Kazutaka
N1 - Funding Information: Yuji Urata Kenji Toma Kuiyun Huang Keiichi Asada Hiroshi Nagai Satoko Takahashi Glen Petitpas Makoto Tashiro Kazutaka Yamaoka Yuji Urata Kenji Toma Kuiyun Huang Keiichi Asada Hiroshi Nagai Satoko Takahashi Glen Petitpas Makoto Tashiro Kazutaka Yamaoka Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai 980-8578, Japan Astronomical Institute, Tohoku University, Sendai, 980-8578, Japan Center for General Education, Chung Yuan Christian University, Taoyuan 32023, Taiwan Academia Sinica Institute of Astronomy and Astrophysics, Taipei 106, Taiwan National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka Tokyo 181-8588, Japan Department of Astronomical Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mitaka, Tokyo 181-8588, Japan Joint ALMA Observatory, Alonso de Cordova 3108, Vitacura, Santiago, Chile NAOJ Chile Observatory, Alonso de Cordova 3788, Oficina 61B, Vitacura, Santiago, Chile Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA Department of Physics, Saitama University, Shimo-Okubo, Saitama 338-8570, Japan Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan Yuji Urata, Kenji Toma, Kuiyun Huang, Keiichi Asada, Hiroshi Nagai, Satoko Takahashi, Glen Petitpas, Makoto Tashiro and Kazutaka Yamaoka 2019-10-20 2019-10-21 13:20:12 cgi/release: Article released bin/incoming: New from .zip MOST MOST 105-2112-M-008-013-MY3 yes We report the first detection of radio polarization of a gamma-ray burst (GRB) afterglow with the first intensive combined use of telescopes in the millimeter and submillimeter ranges for GRB 171205A. The linear polarization degree in the millimeter band at the subpercent level (0.27%���0.04%) is lower than those observed in late-time optical afterglows (weighted average of ∼1%). The Faraday depolarization by nonaccelerated, cool electrons in the shocked region is one of the possible mechanisms for the low value. This scenario requires a total energy that is larger by a factor of ∼10 than ordinary estimates without considering nonaccelerated electrons. The polarization position angle varies by at least 20� across the millimeter band, which is not inconsistent with this scenario. This result indicates that polarimetry in the millimeter and submillimeter ranges is a unique tool for investigating GRB energetics, and coincident observations with multiple frequencies or bands would provide more accurate measurements of the nonaccelerated electron fraction. � 2019. The American Astronomical Society. All rights reserved. Abbott B. P., Abbott R., Abbott T. D. et al 2017 ApJL 848 L13 10.3847/2041-8213/aa920c Abbott B. P., Abbott R., Abbott T. D. et al ApJL 0004-637X 848 2017 L13 Brentjens M. A. and de Bruyn A. G. 2005 A&A 441 1217 10.1051/0004-6361:20052990 Brentjens M. A. and de Bruyn A. G. A&A 0004-6361 441 2005 1217 Costa E., Frontera F., Heise J. et al 1997 Natur 387 783 10.1038/42885 Costa E., Frontera F., Heise J. et al Natur 387 1997 783 Covino S. and Gotz D. 2016 A&AT 29 205 Covino S. and Gotz D. A&AT 1055-6796 29 2016 205 Cucchiara A., Levan A. J., Fox D. B. et al 2011 ApJ 736 7 10.1088/0004-637X/736/1/7 Cucchiara A., Levan A. J., Fox D. B. et al ApJ 0004-637X 736 1 7 2011 7 de Ugarte Postigo A., Izzo L., Kann D. A. et al 2017 GCN 22204 1 de Ugarte Postigo A., Izzo L., Kann D. A. et al GCN 0147-0728 22204 2017 1 de Ugarte Postigo A., Schulze S., Bremer M. et al 2017 GCN 22187 1 de Ugarte Postigo A., Schulze S., Bremer M. et al GCN 0147-0728 22187 2017 1 D’Elia V., Campana S., D’Aì A. et al 2018 A&A 619 A66 10.1051/0004-6361/201833847 D’Elia V., Campana S., D’Aì A. et al A&A 0004-6361 619 2018 A66 D’Elia V., D’Ai A., Lien A. Y. and Sbarufatti B. 2017 GCN 22177 1 D’Elia V., D’Ai A., Lien A. Y. and Sbarufatti B. GCN 0147-0728 22177 2017 1 Eichler D. and Waxman E. 2005 ApJ 627 861 10.1086/430596 Eichler D. and Waxman E. ApJ 0004-637X 627 2 861 2005 861 Granot J. and Sari R. 2002 ApJ 568 820 10.1086/338966 Granot J. and Sari R. ApJ 0004-637X 568 2 820 2002 820 Granot J. and Taylor G. B. 2005 ApJ 625 263 10.1086/429536 Granot J. and Taylor G. B. ApJ 0004-637X 625 1 263 2005 263 Greiner J., Klose S., Reinsch K. et al 2003 Natur 426 157 10.1038/nature02077 Greiner J., Klose S., Reinsch K. et al Natur 426 2003 157 Gruzinov A. and Waxman E. 1999 ApJ 511 852 10.1086/306720 Gruzinov A. and Waxman E. ApJ 0004-637X 511 2 852 1999 852 Huang L. and Shcherbakov R. V. 2011 MNRAS 416 2574 10.1111/j.1365-2966.2011.19207.x Huang L. and Shcherbakov R. V. MNRAS 0035-8711 416 2011 2574 Izzo L., Selsing J., Japelj J. et al 2017 GCN 22180 1 Izzo L., Selsing J., Japelj J. et al GCN 0147-0728 22180 2017 1 Jones T. W. and O’Dell S. L. 1977 ApJ 214 522 10.1086/155278 Jones T. W. and O’Dell S. L. ApJ 214 1977 522 Kawaguchi K., Shibata M. and Tanaka M. 2018 ApJL 865 L21 10.3847/2041-8213/aade02 Kawaguchi K., Shibata M. and Tanaka M. ApJL 0004-637X 865 2018 L21 Laskar T., Coppejans D. L., Margutti R. and Alexander K. D. 2017 GCN 22216 1 Laskar T., Coppejans D. L., Margutti R. and Alexander K. D. GCN 0147-0728 22216 2017 1 Matsumiya M. and Ioka K. 2003 ApJL 595 L25 10.1086/378879 Matsumiya M. and Ioka K. ApJL 0004-637X 595 2003 L25 McMullin J. P., Waters B., Schiebel D., Young W. and Golap K. 2007 adass XVI 376 127 McMullin J. P., Waters B., Schiebel D., Young W. and Golap K. adass XVI 376 2007 127 Murase K., Ioka K., Nagataki S. et al 2006 ApJL 651 L5 10.1086/509323 Murase K., Ioka K., Nagataki S. et al ApJL 0004-637X 651 2006 L5 Nagai H., Nakanishi K., Paladino R. et al 2016 ApJ 824 132 10.3847/0004-637X/824/2/132 Nagai H., Nakanishi K., Paladino R. et al ApJ 0004-637X 824 2 132 2016 132 Oppermann N., Junklewitz H., Robbers G. et al 2012 A&A 542 A93 10.1051/0004-6361/201118526 Oppermann N., Junklewitz H., Robbers G. et al A&A 0004-6361 542 2012 A93 Panaitescu A. and Kumar P. 2002 ApJ 571 779 10.1086/340094 Panaitescu A. and Kumar P. ApJ 0004-637X 571 2 779 2002 779 Ressler S. M. and Laskar T. 2017 ApJ 845 150 10.3847/1538-4357/aa8268 Ressler S. M. and Laskar T. ApJ 0004-637X 845 2 150 2017 150 Sagiv A., Waxman E. and Loeb A. 2004 ApJ 615 366 10.1086/423977 Sagiv A., Waxman E. and Loeb A. ApJ 0004-637X 615 1 366 2004 366 Sault R. J., Teuben P. J. and Wright M. C. H. 1995 adass IV 77 433 Sault R. J., Teuben P. J. and Wright M. C. H. adass IV 77 1995 433 Sawicki M. 2012 PASP 124 1208 10.1086/668636 Sawicki M. PASP 1538-3873 124 921 1208 2012 1208 Sheth K., Frail D. A., White S. et al 2003 ApJL 595 L33 10.1086/378933 Sheth K., Frail D. A., White S. et al ApJL 0004-637X 595 2003 L33 Sokoloff D. D., Bykov A. A., Shukurov A. et al 1998 MNRAS 299 189 10.1046/j.1365-8711.1998.01782.x Sokoloff D. D., Bykov A. A., Shukurov A. et al MNRAS 0035-8711 299 1998 189 Tanvir N. R., Fox D. B., Levan A. J. et al 2009 Natur 461 1254 10.1038/nature08459 Tanvir N. R., Fox D. B., Levan A. J. et al Natur 461 2009 1254 Toma K., Ioka K. and Nakamura T. 2008 ApJL 673 L123 10.1086/528740 Toma K., Ioka K. and Nakamura T. ApJL 0004-637X 673 2008 L123 Toma K., Yoon S.-C. and Bromm V. 2016 SSRv 202 159 10.1007/s11214-016-0250-7 Toma K., Yoon S.-C. and Bromm V. SSRv 202 2016 159 Totani T., Aoki K., Hattori T. et al 2014 PASJ 66 63 10.1093/pasj/psu032 Totani T., Aoki K., Hattori T. et al PASJ 0004-6264 66 2014 63 Uehara T. et al 2012 ApJL 752 L6 10.1088/2041-8205/752/1/L6 Uehara T. et al ApJL 0004-637X 752 2012 L6 Urata Y., Huang K., Asada K. et al 2015 AdAst 2015 165030 10.1155/2015/165030 Urata Y., Huang K., Asada K. et al AdAst 2015 165030 2015 Urata Y., Huang K., Takahashi S. et al 2014 ApJ 789 146 10.1088/0004-637X/789/2/146 Urata Y., Huang K., Takahashi S. et al ApJ 0004-637X 789 2 146 2014 146 van Adelsberg M., Heng K., McCray R. and Raymond J. C. 2008 ApJ 689 1089 10.1086/592680 van Adelsberg M., Heng K., McCray R. and Raymond J. C. ApJ 0004-637X 689 2 1089 2008 1089 van der Horst A. J., Paragi Z., de Bruyn A. G. et al 2014 MNRAS 444 3151 10.1093/mnras/stu1664 van der Horst A. J., Paragi Z., de Bruyn A. G. et al MNRAS 0035-8711 444 2014 3151 Vink J., Broersen S., Bykov A. and Gabici S. 2015 A&A 579 A13 10.1051/0004-6361/201424612 Vink J., Broersen S., Bykov A. and Gabici S. A&A 0004-6361 579 2015 A13 Warren D. C., Barkov M. V., Ito H., Nagataki S. and Laskar T. 2018 MNRAS 480 4060 10.1093/mnras/sty2138 Warren D. C., Barkov M. V., Ito H., Nagataki S. and Laskar T. MNRAS 0035-8711 480 2018 4060 Wiersema K., Covino S., Toma K. et al 2014 Natur 509 201 10.1038/nature13237 Wiersema K., Covino S., Toma K. et al Natur 509 2014 201 Zhang B. and Mészáros P. 2004 IJMPA 19 2385 10.1142/S0217751X0401746X Zhang B. and Mészáros P. IJMPA 0217-751X 19 2004 2385 Zhang W. and MacFadyen A. 2009 ApJ 698 1261 10.1088/0004-637X/698/2/1261 Zhang W. and MacFadyen A. ApJ 0004-637X 698 2 1261 2009 1261 Funding Information: This work is also supported y JSPS Grants-in-Aid for Scientific Research No. 18H01245 Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved.
PY - 2019/10/20
Y1 - 2019/10/20
N2 - We report the first detection of radio polarization of a gamma-ray burst (GRB) afterglow with the first intensive combined use of telescopes in the millimeter and submillimeter ranges for GRB 171205A. The linear polarization degree in the millimeter band at the subpercent level (0.27% 0.04%) is lower than those observed in late-time optical afterglows (weighted average of ∼1%). The Faraday depolarization by nonaccelerated, cool electrons in the shocked region is one of the possible mechanisms for the low value. This scenario requires a total energy that is larger by a factor of ∼10 than ordinary estimates without considering nonaccelerated electrons. The polarization position angle varies by at least 20 across the millimeter band, which is not inconsistent with this scenario. This result indicates that polarimetry in the millimeter and submillimeter ranges is a unique tool for investigating GRB energetics, and coincident observations with multiple frequencies or bands would provide more accurate measurements of the nonaccelerated electron fraction.
AB - We report the first detection of radio polarization of a gamma-ray burst (GRB) afterglow with the first intensive combined use of telescopes in the millimeter and submillimeter ranges for GRB 171205A. The linear polarization degree in the millimeter band at the subpercent level (0.27% 0.04%) is lower than those observed in late-time optical afterglows (weighted average of ∼1%). The Faraday depolarization by nonaccelerated, cool electrons in the shocked region is one of the possible mechanisms for the low value. This scenario requires a total energy that is larger by a factor of ∼10 than ordinary estimates without considering nonaccelerated electrons. The polarization position angle varies by at least 20 across the millimeter band, which is not inconsistent with this scenario. This result indicates that polarimetry in the millimeter and submillimeter ranges is a unique tool for investigating GRB energetics, and coincident observations with multiple frequencies or bands would provide more accurate measurements of the nonaccelerated electron fraction.
UR - http://www.scopus.com/inward/record.url?scp=85075451389&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85075451389&partnerID=8YFLogxK
U2 - 10.3847/2041-8213/ab48f3
DO - 10.3847/2041-8213/ab48f3
M3 - Article
AN - SCOPUS:85075451389
VL - 884
JO - Astrophysical Journal Letters
JF - Astrophysical Journal Letters
SN - 2041-8205
IS - 2
M1 - L58
ER -