### Abstract

Let G be a weighted, complete, directed acyclic graph (DAG) whose edge weights obey the concave Monge condition. We give an efficient algorithm for finding the minimum-weight k-link path between a given pair of vertices for any given k. The time complexity of our algorithm is {Mathematical expression}. Our algorithm uses some properties of DAGs with the concave Monge property together with the parametric search technique. We apply our algorithm to get efficient solutions for the following problems, improving on previous results: (1) Finding the largest k-gon contained in a given convex polygon. (2) Finding the smallest k-gon that is the intersection of k half-planes out of n half-planes defining a convex n-gon. (3) Computing maximum k-cliques of an interval graph. (4) Computing length-limited Huffman codes. (5) Computing optimal discrete quantization.

Original language | English |
---|---|

Pages (from-to) | 263-280 |

Number of pages | 18 |

Journal | Discrete & Computational Geometry |

Volume | 12 |

Issue number | 1 |

DOIs | |

Publication status | Published - 1994 Dec 1 |

### ASJC Scopus subject areas

- Theoretical Computer Science
- Geometry and Topology
- Discrete Mathematics and Combinatorics
- Computational Theory and Mathematics

## Fingerprint Dive into the research topics of 'Finding a minimum-weight k-link path in graphs with the concave Monge property and applications'. Together they form a unique fingerprint.

## Cite this

*Discrete & Computational Geometry*,

*12*(1), 263-280. https://doi.org/10.1007/BF02574380