Ferroelectric columnar assemblies from the bowl-to-bowl inversion of aromatic cores

Shunsuke Furukawa, Jianyun Wu, Masaya Koyama, Keisuke Hayashi, Norihisa Hoshino, Takashi Takeda, Yasutaka Suzuki, Jun Kawamata, Masaichi Saito, Tomoyuki Akutagawa

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


Organic ferroelectrics, in which the constituent molecules retain remanent polarization, represent an important topic in condensed-matter science, and their attractive properties, which include lightness, flexibility, and non-toxicity, are of potential use in state-of-the-art ferroelectric devices. However, the mechanisms for the generation of ferroelectricity in such organic compounds remain limited to a few representative concepts, which has hitherto severely hampered progress in this area. Here, we demonstrate that a bowl-to-bowl inversion of a relatively small organic molecule with a bowl-shaped π-aromatic core generates ferroelectric dipole relaxation. The present results thus reveal an unprecedented concept to produce ferroelectricity in small organic molecules, which can be expected to strongly impact materials science.

Original languageEnglish
Article number768
JournalNature communications
Issue number1
Publication statusPublished - 2021 Dec
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Ferroelectric columnar assemblies from the bowl-to-bowl inversion of aromatic cores'. Together they form a unique fingerprint.

Cite this