Fermi surface in La-based cuprate superconductors from Compton scattering imaging

Hiroyuki Yamase, Yoshiharu Sakurai, Masaki Fujita, Shuichi Wakimoto, Kazuyoshi Yamada

Research output: Contribution to journalArticlepeer-review

Abstract

Compton scattering provides invaluable information on the underlying Fermi surface (FS) and is a powerful tool complementary to angle-resolved photoemission spectroscopy and quantum oscillation measurements. Here we perform high-resolution Compton scattering measurements for La2−xSrxCuO4 with x = 0.08 (Tc = 20 K) at 300 K and 150 K, and image the momentum distribution function in the two-dimensional Brillouin zone. We find that the observed images cannot be reconciled with the conventional hole-like FS believed so far. Instead, our data imply that the FS is strongly deformed by the underlying nematicity in each CuO2 plane, but the bulk FSs recover the fourfold symmetry. We also find an unusually strong temperature dependence of the momentum distribution function, which may originate from the pseudogap formation in the presence of the reconstructed FSs due to the underlying nematicity. Additional measurements for x = 0.15 and 0.30 at 300 K suggest similar FS deformation with weaker nematicity, which nearly vanishes at x = 0.30.

Original languageEnglish
Article number2223
JournalNature communications
Volume12
Issue number1
DOIs
Publication statusPublished - 2021 Dec

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Fermi surface in La-based cuprate superconductors from Compton scattering imaging'. Together they form a unique fingerprint.

Cite this