Feasibility of waste to bio-diesel production via nuclear-biomass hybrid model; system dynamics analysis

Hoseok Nam, Ryuta Kasada, Satoshi Konishi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

Nuclear-Biomass hybrid system which takes waste biomass from municipal, agricultural area, and forest as feedstock produces Bio-diesel fuel from synthesis gas generated by endothermic pyrolytic gasification using high temperature nuclear heat. Over 900 degree Celsius of exterior thermal heat from nuclear reactors, Very High Temperature Reactor (VHTR) and some other heat sources, bring about waste biomass gasification to produce maximum amount of chemical energy from feedstock. Hydrogen from Biomass gasification or Bio-diesel as the product of Fischer-Tropsch reaction following it provide fuels for transport sector. Nuclear-Biomass hybrid system is a new alternatives to produce more energy generating synergy effects by efficiently utilizing the high temperature heat from nuclear reactor that might be considerably wasted by thermal cycle, and also energy loss from biomass combustion or biochemical processes. System Dynamics approach is taken to analyze low-carbon synthesis fuel, Bio-diesel, production with combination of carbon monoxide and hydrogen from biomass gasification. Feedstock cost considering collection, transportation, storage and facility for biomass gasification impacts the economic feasibility of this model. This paper provides the implication of practical nuclear-biomass hybrid system application with feedstock supply chain through evaluation of economic feasibility.

Original languageEnglish
Title of host publication2017 International Congress on Advances in Nuclear Power Plants, ICAPP 2017 - A New Paradigm in Nuclear Power Safety, Proceedings
PublisherInternational Congress on Advances in Nuclear Power Plants, ICAPP
ISBN (Electronic)9784890471676
Publication statusPublished - 2017 Jan 1
Externally publishedYes
Event2017 International Congress on Advances in Nuclear Power Plants: A New Paradigm in Nuclear Power Safety, ICAPP 2017 - Fukui and Kyoto, Japan
Duration: 2017 Apr 242017 Apr 28

Publication series

Name2017 International Congress on Advances in Nuclear Power Plants, ICAPP 2017 - A New Paradigm in Nuclear Power Safety, Proceedings

Other

Other2017 International Congress on Advances in Nuclear Power Plants: A New Paradigm in Nuclear Power Safety, ICAPP 2017
CountryJapan
CityFukui and Kyoto
Period17/4/2417/4/28

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Nuclear Energy and Engineering

Fingerprint Dive into the research topics of 'Feasibility of waste to bio-diesel production via nuclear-biomass hybrid model; system dynamics analysis'. Together they form a unique fingerprint.

  • Cite this

    Nam, H., Kasada, R., & Konishi, S. (2017). Feasibility of waste to bio-diesel production via nuclear-biomass hybrid model; system dynamics analysis. In 2017 International Congress on Advances in Nuclear Power Plants, ICAPP 2017 - A New Paradigm in Nuclear Power Safety, Proceedings (2017 International Congress on Advances in Nuclear Power Plants, ICAPP 2017 - A New Paradigm in Nuclear Power Safety, Proceedings). International Congress on Advances in Nuclear Power Plants, ICAPP.