Fatty acid binding protein 7 is involved in the proliferation of reactive astrocytes, but not in cell migration and polarity

Tomonori Hara, Banlanjo Abdulaziz Umaru, Kazem Sharifi, Takeo Yoshikawa, Yuji Owada, Yoshiteru Kagawa

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Reactive gliosis is a defense mechanism to minimize and repair the initial damage after CNS injuries that is characterized by increases in astrocytic reactivity and proliferation, with enhanced expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Fatty acid binding protein 7 (FABP7) is abundantly expressed in several types of glial cells, such as astrocytes and oligodendrocyte precursor cells, during brain development and FABP7-positive astrocytes have been shown to be significantly increased in the mouse cortex after a stab injury. However, the functional significance of FABP7 in gliosis remains unclear. In the present study, we examined the mechanism of FABP7-mediated regulation of gliosis using an in vitro scratch-injury model using primary cultured astrocytes. Western blotting showed that FABP7 expression was increased significantly in scratch wounded astrocytes at the edge of the injury compared with intact astrocytes. Through monitoring the occupancy of the injured area, FAB7-KO astrocytes showed a slower proliferation rate compared with WT astrocytes after 48 hr, which was confirmed by BrdU immunostaining. There were no differences in cell migration and polarity of reactive astrocytes between FABP-KO and WT. Conclusively, our data suggest that FABP7 is important in the proliferation of reactive astrocytes in the context of CNS injury.

Original languageEnglish
Pages (from-to)73-81
Number of pages9
JournalACTA HISTOCHEMICA ET CYTOCHEMICA
Volume53
Issue number4
DOIs
Publication statusPublished - 2020

Keywords

  • Fatty acid binding protein 7
  • Migration
  • Polarity
  • Proliferation
  • Reactive astrocyte

ASJC Scopus subject areas

  • Pathology and Forensic Medicine
  • Biochemistry
  • Physiology
  • Histology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Fatty acid binding protein 7 is involved in the proliferation of reactive astrocytes, but not in cell migration and polarity'. Together they form a unique fingerprint.

Cite this