Fast and robust time integration method for stiff chemical kinetic ODEs

Yuhi Morii, Hiroshi Terashima, Mitsuo Koshi, Taro Shimizu, Eiji Shima

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Citations (Scopus)

Abstract

A simple yet robust and fast time integration method is proposed for efficiently solving stiff chemical kinetic ordinary differential equations. The proposed method is based on a general formula which preserves the conservation laws for any integration operators con- structed using the Lagrange multiplier method. A quasi-steady-state approxixmation is used as the integrator. The time step size is automatically controlled by using a Lagrange multiplier so that the error, which is caused by the Lagrange multiplier method, is small. The results of several ignition problems demonstrate the robustness and accuracy of the proposed method in comparison with other integration methods such as a implicit inte- gration method (VODE), a multi time-scalse method (MTS), and a modified CHEMEQ2. The proposed method, named ERENA, provides the fastest performance for the most of conditions used in this study.

Original languageEnglish
Title of host publication50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014
PublisherAmerican Institute of Aeronautics and Astronautics Inc.
ISBN (Electronic)9781624103032
DOIs
Publication statusPublished - 2014 Jan 1
Externally publishedYes
Event50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and exhibit 2014 - Cleveland, United States
Duration: 2014 Jul 282014 Jul 30

Publication series

Name50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014

Other

Other50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and exhibit 2014
CountryUnited States
CityCleveland
Period14/7/2814/7/30

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Aerospace Engineering
  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Fast and robust time integration method for stiff chemical kinetic ODEs'. Together they form a unique fingerprint.

  • Cite this

    Morii, Y., Terashima, H., Koshi, M., Shimizu, T., & Shima, E. (2014). Fast and robust time integration method for stiff chemical kinetic ODEs. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014 (50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference 2014). American Institute of Aeronautics and Astronautics Inc.. https://doi.org/10.2514/6.2014-3920