Fabrication of pseudo-spin-MOSFETs using a multi-project wafer CMOS chip

R. Nakane, Y. Shuto, H. Sukegawa, Z. C. Wen, S. Yamamoto, S. Mitani, M. Tanaka, K. Inomata, S. Sugahara

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

We demonstrate monolithic integration of pseudo-spin-MOSFETs (PS-MOSFETs) using vendor-made MOSFETs fabricated in a low-cost multi-project wafer (MPW) product and lab-made magnetic tunnel junctions (MTJs) formed on the topmost passivation film of the MPW chip. The tunneling magnetoresistance (TMR) ratio of the fabricated MTJs strongly depends on the surface roughness of the passivation film. Nevertheless, after the chip surface was atomically flattened by SiO2 deposition on it and successive chemical-mechanical polish (CMP) process for the surface, the fabricated MTJs on the chip exhibits a sufficiently large TMR ratio (>140%) adaptable to the PS-MOSFET application. The implemented PS-MOSFETs show clear modulation of the output current controlled by the magnetization configuration of the MTJs, and a maximum magnetocurrent ratio of 90% is achieved. These magnetocurrent behaviour is quantitatively consistent with those predicted by HSPICE simulations. The developed integration technique using a MPW CMOS chip would also be applied to monolithic integration of CMOS devices/circuits and other various functional devices/materials, which would open the door for exploring CMOS-based new functional hybrid circuits.

Original languageEnglish
Pages (from-to)52-58
Number of pages7
JournalSolid-State Electronics
Volume102
DOIs
Publication statusPublished - 2014 Dec

Keywords

  • Functional device
  • Monolithic integration of CMOS
  • More-than-Moore research
  • Spin-transistors

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Fabrication of pseudo-spin-MOSFETs using a multi-project wafer CMOS chip'. Together they form a unique fingerprint.

Cite this