Abstract
Oriented and well-isolated L 10 -FeCuPd ternary alloy nanoparticles have been fabricated by electron-beam evaporation followed by postdeposition annealing. A single L 10 phase was formed in the FeCuPd nanoparticles with (Fe+Cu) content lower than 48 at. %. A strong preferential c -axis orientation along the film normal direction was achieved by Cu addition, which leads to a strong perpendicular magnetic anisotropy. Also, a lowering of the ordering temperature by 50 K compared to the binary L 10 -FePd nanoparticles was achieved by Cu addition. By contrast, composite particles composed of the bcc Fe and the L 10 -FeCuPd were formed when the (Fe+Cu) content was higher than 52 at. %. Coexistence of the bcc Fe and the L 10 -FeCuPd was confirmed by high-resolution transmission electron microscopy and nanobeam electron diffraction. It was found that perpendicular magnetic anisotropy of the L 10 -FeCuPd nanoparticles on the NaCl substrate is sensitive to the alloy composition.
Original language | English |
---|---|
Article number | 08N706 |
Journal | Journal of Applied Physics |
Volume | 99 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2006 May 25 |
ASJC Scopus subject areas
- Physics and Astronomy(all)