Fabrication of ordered arrays of biodegradable polymer pincushions using self-organized honeycomb-patterned films

Masaru Tanaka, Masafumi Takebayashi, Masatsugu Shimomura

    Research output: Contribution to journalArticlepeer-review

    16 Citations (Scopus)

    Abstract

    Nano- and micropatterned structures of tissue engineering scaffolds made of biodegradable and biocompatible polymers profoundly influence cell behavior. The present study describes a technically simple and inexpensive method to rapidly fabricate hexagonal arrays of biodegradable polymer pillars (pincushions). As precursors to these polymer pincushion arrays, highly regular porous biodegradable polymer films (self-organized honeycomb-patterned films, called honeycomb films) were prepared on a glass substrate using a simple casting technique. Scanning electron microscope observations revealed that the honeycomb film was composed of a top and bottom layer. This double-layered structure is attributable to the self-organization of hexagonally packed arrays of water droplets that form the template. When we peeled off the top layer of the honeycomb film under ambient conditions using adhesive tape, we obtained arrays of polymer pincushions on both side of the glass substrate and on the adhesive tape. Each air hole is surrounded by six pincushions, each with a diameter of 0.1-1 mm. We also studied factors that determine the morphology of the pincushions, such as the thermal and mechanical properties of the polymers used. It was shown that the heights, widths, and distances of separation between the pincushions could be controlled by the choice of polymer and the pore structure of the original honeycomb film. Such well-ordered, biologically inspired pincushion structures could find application in biomedical, photonic, and electronic materials.

    Original languageEnglish
    Pages (from-to)175-182
    Number of pages8
    JournalMacromolecular Symposia
    Volume279
    Issue number1
    DOIs
    Publication statusPublished - 2009 May

    Keywords

    • Pillar
    • Pincushion
    • Scaffold
    • Self-organization
    • Tissue engineering

    ASJC Scopus subject areas

    • Condensed Matter Physics
    • Organic Chemistry
    • Polymers and Plastics
    • Materials Chemistry

    Fingerprint Dive into the research topics of 'Fabrication of ordered arrays of biodegradable polymer pincushions using self-organized honeycomb-patterned films'. Together they form a unique fingerprint.

    Cite this