Fabrication of high-aspect-ratio PZT structure by nanocomposite sol-gel method for laterally-driven piezoelectric MEMS switch

Nan Wang, Shinya Yoshida, Masafumi Kumano, Yusuke Kawai, Masayoshi Esashi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this study, we have proposed a novel laterally driven piezoelectric MEMS (MicroElectro Mechanical Systems) switch using a high-aspect-ratio (AR) PZT (Pb[Zr xTi 1-x]O 3) structure. Then, the fabrication process of the PZT structure based on PZT filling process in a deep Si trench is developed to realize a laterally driven PZT microactuator. At first, the process of the Si trench with a thin Al 2O 3 layer as a Pb-diffusion barrier layer and with a Pt film as the electrode for the actuator is successfully developed. Then, it is demonstrated that the dense and crack-free PZT structure with high-AR can be fabricated by the PZT filling process in the Si trench by nanocomposite sol-gel method. In addition, it is speculated from the X-ray diffraction pattern that the composite PZT has pure perovskite phase and piezoelectric property. The remnant polarization (P r) and the coercive field (E c) of a nanocomposite PZT thick film measured 11.7 μC/cm 2 and 71.2 kV/cm, respectively. As the result of these experiments, it is demonstrated that the fabrication process of the high-AR PZT structure has the potential to realize the laterally driven piezoelectric MEMS switch.

Original languageEnglish
Title of host publication2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012
Pages247-252
Number of pages6
DOIs
Publication statusPublished - 2012 Jun 1
Event7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012 - Kyoto, Japan
Duration: 2012 Mar 52012 Mar 8

Publication series

Name2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012

Other

Other7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012
CountryJapan
CityKyoto
Period12/3/512/3/8

Keywords

  • High-aspect-ratio structure
  • Nanocomposite PZT
  • Piezoelectric MEMS switch

ASJC Scopus subject areas

  • Engineering (miscellaneous)

Fingerprint Dive into the research topics of 'Fabrication of high-aspect-ratio PZT structure by nanocomposite sol-gel method for laterally-driven piezoelectric MEMS switch'. Together they form a unique fingerprint.

Cite this