Expression and Functional Analyses of Ectodermal Transcription Factors FoxJ-r, SoxF, and SP8/9 in Early Embryos of the Ascidian Halocynthia roretzi

Yu Shih, Kai Wang, Gaku Kumano, Hiroki Nishida

Research output: Contribution to journalArticlepeer-review

Abstract

The spatiotemporal expression of zygotic genes is regulated by transcription factors, which mediate cell fate decision and morphogenesis. Investigation of the expression patterns and their transcriptional regulatory relationships is crucial to understand embryonic development. Staged RNA-seqof the ascidian Halocynthia roretzi has previously shown that nine genes encoding transcription factors are transiently expressed at the blastula stage, which is the stage at which cell fates are specified and differentiation starts. Six of these transcription factors have already been found to play important roles during early development. However, the functions of the other transcription factors (FoxJ-r, SoxF, and SP8/9) remain unknown. The study of the spatial and temporal expression patterns showed that all three genes were expressed in the animal hemisphere as early as the 16-cell stage. This is likely due to transcription factor genes that are expressed in the vegetal hemisphere, which have been extensively and comprehensively analyzed in previous studies of ascidians. Functional analyses using FoxJ-r morphants showed that they resulted in the disruption of laterality and the absence of epidermal mono-cilia, suggesting FoxJ-r functions in cilia formation and, consequently, in the generation of left-right asymmetry, as observed in vertebrates. SoxF knockdown resulted in incomplete epiboly by the ectoderm during gastrulation, while SP8/9 knockdown showed no phenotype until the tailbud stage in the present study, although it was expressed during blastula stages. Our results indicate that transcription factor genes expressed at the cleavage stages play roles in diverse functions, and are not limited to cell fate specification.

Original languageEnglish
Pages (from-to)26-35
Number of pages10
JournalZoological Science
Volume38
Issue number1
DOIs
Publication statusPublished - 2021 Feb 1

Keywords

  • FoxJ
  • SP8/9
  • SoxF
  • ascidian embryo
  • ectodermal development

ASJC Scopus subject areas

  • Animal Science and Zoology

Fingerprint Dive into the research topics of 'Expression and Functional Analyses of Ectodermal Transcription Factors FoxJ-r, SoxF, and SP8/9 in Early Embryos of the Ascidian Halocynthia roretzi'. Together they form a unique fingerprint.

Cite this