Exponentially localized Wannier functions in periodic zero flux magnetic fields

G. De Nittis, M. Lein

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

In this work, we investigate conditions which ensure the existence of an exponentially localized Wannier basis for a given periodic hamiltonian. We extend previous results [Panati, G., Ann. Henri Poincare8, 995-1011 (2007)10.1007/s00023-007-0326-8] to include periodic zero flux magnetic fields which is the setting also investigated by Kuchment [J. Phys. A: Math. Theor.42, 025203 (2009)10.1088/1751-8113/42/2/025203]. The new notion of magnetic symmetry plays a crucial rôle; to a large class of symmetries for a non-magnetic system, one can associate "magnetic" symmetries of the related magnetic system. Observing that the existence of an exponentially localized Wannier basis is equivalent to the triviality of the so-called Bloch bundle, a rank m hermitian vector bundle over the Brillouin zone, we prove that magnetic time-reversal symmetry is sufficient to ensure the triviality of the Bloch bundle in spatial dimension d = 1, 2, 3. For d = 4, an exponentially localized Wannier basis exists provided that the trace per unit volume of a suitable function of the Fermi projection vanishes. For d > 4 and d ≤ 2m (stable rank regime) only the exponential localization of a subset of Wannier functions is shown; this improves part of the analysis of Kuchment [J. Phys. A: Math. Theor.42, 025203 (2009)10.1088/1751-8113/42/2/025203]. Finally, for d > 4 and d > 2m (unstable rank regime) we show that the mere analysis of Chern classes does not suffice in order to prove triviality and thus exponential localization.

Original languageEnglish
Article number112103
JournalJournal of Mathematical Physics
Volume52
Issue number11
DOIs
Publication statusPublished - 2011 Nov 1

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint Dive into the research topics of 'Exponentially localized Wannier functions in periodic zero flux magnetic fields'. Together they form a unique fingerprint.

Cite this