Abstract
A three-dimensional (3D) topological insulator features a 2D surface state consisting of a single linearly dispersive Dirac cone1–3. Under broken time-reversal symmetry, the single Dirac cone is predicted to cause half-integer quantization of Hall conductance, which is a manifestation of the parity anomaly in quantum field theory1–9. However, despite various observations of quantization phenomena10–15, the half-integer quantization has not been observed because most experiments simultaneously measure a pair of equivalent Dirac cones16 on two opposing surfaces. Here we demonstrate the half-integer quantization of Hall conductance in a synthetic heterostructure termed a semi-magnetic topological insulator, where only one surface state is gapped by magnetic doping and the opposite one is non-magnetic and gapless. We observe half-quantized Faraday and Kerr rotations with terahertz magneto-optical spectroscopy and half-quantized Hall conductance in transport at zero magnetic field. Our results suggest a condensed-matter realization of the parity anomaly4–9 and open a way for studying the physics enabled by a single Dirac fermion.
Original language | English |
---|---|
Pages (from-to) | 390-394 |
Number of pages | 5 |
Journal | Nature Physics |
Volume | 18 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2022 Apr |
ASJC Scopus subject areas
- Physics and Astronomy(all)