Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra

Xiaojun Wei, Takeshi Tanaka, Yohei Yomogida, Naomichi Sato, Riichiro Saito, Hiromichi Kataura

Research output: Contribution to journalArticle

53 Citations (Scopus)

Abstract

Experimental band structure analyses of single-walled carbon nanotubes have not yet been reported, to the best of our knowledge, except for a limited number of reports using scanning tunnelling spectroscopy. Here we demonstrate the experimental determination of the excitonic band structures of single-chirality single-walled carbon nanotubes using their circular dichroism spectra. In this analysis, we use gel column chromatography combining overloading selective adsorption with stepwise elution to separate 12 different single-chirality enantiomers. Our samples show higher circular dichroism intensities than the highest values reported in previous works, indicating their high enantiomeric purity. Excitonic band structure analysis is performed by assigning all observed E ii and E ij optical transitions in the circular dichroism spectra. The results reproduce the asymmetric structures of the valence and conduction bands predicted by density functional theory. Finally, we demonstrate that an extended empirical formula can estimate E ij optical transition energies for any (n,m) species.

Original languageEnglish
Article number12899
JournalNature communications
Volume7
DOIs
Publication statusPublished - 2016 Oct 5

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra'. Together they form a unique fingerprint.

  • Cite this