Experimental and theoretical studies of Sub-THz detection using strained-Si FETs

J. A. Delgado Notario, E. Javadi, V. Clerico, K. Fobelets, T. Otsuji, E. Diez, J. E. Velázquez-Pérez, Y. M. Meziani

Research output: Contribution to journalConference articlepeer-review

Abstract

We report on experimental and theoretical studies of nanoscale gate-lengths strained Silicon MODFETs as room temperature non resonant detectors. Devices were excited at room temperature by an electronic source at 150 and 300 GHz to characterize their sub-THz response. The maximum of the photovoltaic response was obtained when the FET gate was biased at a value close to the threshold voltage. Simulations based on a bi-dimensional hydrodynamic model for the charge transport coupled to a Poisson equation solver were performed by using Synopsys TCAD. A charge boundary condition for the floating drain contact was implemented to obtain the photovoltaic response. Results from numerical simulations are in agreement with experimental ones. To understand the coupling between terahertz radiation and devices, the devices were rotated at different angles under excitation at both sub-terahertz frequencies and their response measured. Both NEP (Noise Equivalent Power) and Responsivity were calculated from measurements. To demonstrate their utility, devices were used as sensors in a terahertz imaging system for inspection of hidden objects at both frequencies.

Original languageEnglish
Article number012003
JournalJournal of Physics: Conference Series
Volume906
Issue number1
DOIs
Publication statusPublished - 2017 Oct 22
Event20th International Conference on Electron Dynamics in Semiconductors, Optoelectronics and Nanostructures, EDISON 2017 - Buffalo, United States
Duration: 2017 Jul 172017 Jul 21

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Experimental and theoretical studies of Sub-THz detection using strained-Si FETs'. Together they form a unique fingerprint.

Cite this