Excitonic effect on the optical response in the one-dimensional two-band Hubbard model

H. Matsueda, T. Tohyama, S. Maekawa

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


Motivated by the gigantic nonlinear optical response in the halogen-bridged Ni-compounds, the underlying electronic states of the compounds are examined in the one-dimensional two-band Hubbard model, by studying the current-current correlation function and the charge density in the ground state. The dynamical density matrix renormalization group method is employed. We find that the low-energy peak of the correlation function consists of a single Lorentzian component for a parameter range appropriate to the compounds. This is due to an excitonic state induced by the intersite Coulomb repulsion between holes on the metal and halogen ions. This is consistent with the optical absorption spectra of the compounds. We suggest that the localization of holes on the metal ions in the ground state brings about the formation of the excitonic state.

Original languageEnglish
Article number153106
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number15
Publication statusPublished - 2005

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Excitonic effect on the optical response in the one-dimensional two-band Hubbard model'. Together they form a unique fingerprint.

Cite this