Evaluation of tool performance of recycle-type Fe3Al based alloy for pure Cu

Takaomi Itoi, Tomoaki Sudo, Kyosuke Yoshimi

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Recycle-type Fe3Al (hereinafter designated as Re-Fe3Al) based alloys reinforced by the carbides of TiC or ZrC were processed by the high frequency induction melting method using a high-carbon Cr steel sludge, Al can scraps and the transition metals of Ti or Zr. The carbides were synthesized by in-situ reaction between the transition metal and carbon in the molten iron aluminum alloy. Vickers hardness values are 309HV0.5 for Re-Fe3Al/TiC alloy, and 473HV0.5 for Re-Fe3Al/ZrC alloy, which are higher than that of P-Fe3Al (preprared from pure-Fe and -Al). The cutting performance of the Re-Fe3Al baed alloys was compared with a High-Speed-Steel (HSS) by cutting tests for pure-Cu extruded bar (C1020) using a lathe under a dry condition. Tool life limit was estimated from frank wear length after the cutting tests of C1020 by finish-machining. Tool life limit of Re-Fe3Al/TiC alloy is more than16 min; P-Fe3Al was 12 min; HSS was 8 min, Re-Fe3Al/ZrC alloy was 7 min at the cutting speed of 100m/min. Also, tool life limit of the Re-Fe3Al/TiC alloy was more than twice times as long as that of the HSS at the cutting speed of 300/min. The relationship between cutting speed and tool life limit clearly indicated that the Re-Fe3Al/TiC alloy was better than the HSS at a higher cutting speed. Therefore, it was concluded that Re-Fe3Al/TiC alloy has excellent cutting tool performance.

Original languageEnglish
Title of host publicationTHERMEC 2013
EditorsB. Mishra, Mihail. Ionescu, T. Chandra
PublisherTrans Tech Publications Ltd
Number of pages5
ISBN (Print)9783038350736
Publication statusPublished - 2014 Jan 1
Event8th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2013 - Las Vegas, NV, United States
Duration: 2013 Dec 22013 Dec 6

Publication series

NameMaterials Science Forum
ISSN (Print)0255-5476
ISSN (Electronic)1662-9752


Other8th International Conference on Processing and Manufacturing of Advanced Materials, THERMEC 2013
CountryUnited States
CityLas Vegas, NV


  • Carbide
  • Composite
  • Recycle
  • Tool
  • Wear

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Evaluation of tool performance of recycle-type Fe<sub>3</sub>Al based alloy for pure Cu'. Together they form a unique fingerprint.

Cite this