Establishing strong connectivity using optimal radius half-disk antennas

Greg Aloupis, Mirela Damian, Robin Flatland, Matias Korman, Özgür Özkan, David Rappaport, Stefanie Wuhrer

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Given a set S of points in the plane representing wireless devices, each point equipped with a directional antenna of radius r and aperture angle α≥180°, our goal is to find orientations and a minimum r for these antennas such that the induced communication graph is strongly connected. We show that r=3 if α∈[180°,240°), r=2 if α∈[240° ,270°), r=2sin(36°) if α∈[270°,288°), and r=1 if α≥288° suffices to establish strong connectivity, assuming that the longest edge in the Euclidean minimum spanning tree of S is 1. These results are worst-case optimal and match the lower bounds presented in [I. Caragiannis, C. Kaklamanis, E. Kranakis, D. Krizanc, A. Wiese, Communication in wireless networks with directional antennae, in: Proc. of the 20th Symp. on Parallelism in Algorithms and Architectures, 2008, pp. 344-351]. In contrast, r=2 is sometimes necessary when α<180°.

Original languageEnglish
Pages (from-to)328-339
Number of pages12
JournalComputational Geometry: Theory and Applications
Volume46
Issue number3
DOIs
Publication statusPublished - 2013 Apr

Keywords

  • Ad-hoc network
  • Directional antennas
  • Minimum spanning tree
  • Radii and orientation assignment

ASJC Scopus subject areas

  • Computer Science Applications
  • Geometry and Topology
  • Control and Optimization
  • Computational Theory and Mathematics
  • Computational Mathematics

Fingerprint Dive into the research topics of 'Establishing strong connectivity using optimal radius half-disk antennas'. Together they form a unique fingerprint.

Cite this