Enzymes as green catalysts for precision macromolecular synthesis

Shin Ichiro Shoda, Hiroshi Uyama, Jun Ichi Kadokawa, Shunsaku Kimura, Shiro Kobayashi

Research output: Contribution to journalReview articlepeer-review

226 Citations (Scopus)

Abstract

The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.

Original languageEnglish
Pages (from-to)2307-2413
Number of pages107
JournalChemical Reviews
Volume116
Issue number4
DOIs
Publication statusPublished - 2016 Jan 21

ASJC Scopus subject areas

  • Chemistry(all)

Fingerprint Dive into the research topics of 'Enzymes as green catalysts for precision macromolecular synthesis'. Together they form a unique fingerprint.

Cite this