Entrainability of cell cycle oscillator models with exponential growth of cell mass

Mitsuyuki Nakao, Tsog Erdene Enkhkhudulmur, Norihiro Katayama, Akihiro Karashima

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model.

Original languageEnglish
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6826-6829
Number of pages4
ISBN (Electronic)9781424479290
DOIs
Publication statusPublished - 2014 Nov 2
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: 2014 Aug 262014 Aug 30

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
CountryUnited States
CityChicago
Period14/8/2614/8/30

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint Dive into the research topics of 'Entrainability of cell cycle oscillator models with exponential growth of cell mass'. Together they form a unique fingerprint.

Cite this