Enhancing the critical current properties of internal Mg diffusion-processed MgB 2 wires by Mg addition

S. J. Ye, M. Song, A. Matsumoto, K. Togano, Y. Zhang, H. Kumakura, M. Takeguchi, R. Teranishi, T. Kiyoshi

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


The internal Mg diffusion (IMD) process produces a high-density MgB 2 layer with high critical current properties, which makes it an attractive and promising method for fabricating MgB 2 wires. We have obtained high critical current properties in our previous research. However, IMD-processed MgB 2 wires can have unreacted B particles remain in the reacted layer due to the long Mg diffusion distance in the B layer during heat treatment. A reduction in the amount of unreacted B particles is expected to enhance the critical current properties. In this study, we attempted to disperse Mg powder in the B layer as an additive in order to decrease the Mg diffusion distance. We found that a 6 mol% Mg powder addition to a B layer drastically decreased the amount of unreacted B particles and enhanced the critical current density to twice the value for IMD-processed MgB 2 wire with no Mg powder added. An analysis is presented that relates the microstructure to the critical current density.

Original languageEnglish
Article number125014
JournalSuperconductor Science and Technology
Issue number12
Publication statusPublished - 2012 Dec
Externally publishedYes

ASJC Scopus subject areas

  • Ceramics and Composites
  • Condensed Matter Physics
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry


Dive into the research topics of 'Enhancing the critical current properties of internal Mg diffusion-processed MgB 2 wires by Mg addition'. Together they form a unique fingerprint.

Cite this