TY - JOUR
T1 - Enhancing the Aggressive Intensity of a Cavitating Jet by Introducing Water Flow Holes and a Long Guide Pipe
AU - Kamisaka, Hirokazu
AU - Soyama, Hitoshi
N1 - Publisher Copyright:
© 2020 BMJ Publishing Group. All rights reserved.
PY - 2021/3/1
Y1 - 2021/3/1
N2 - It is known that the geometry of the nozzle has a great effect on the aggressive intensity of a cavitating jet. In previous reports, various nozzle geometries were proposed, and improvements made to the aggressive intensity were reported. However, no detailed description of the reasons why the aggressive intensity is improved by these various geometries was given. In this study, we conducted erosion tests on pure aluminum Japanese Industrial Standards JIS A1050P using 11 different nozzles with different geometries downstream from the throat outlet in order to understand the effects of the nozzle geometry on the aggressive intensity. In addition, in order to investigate the characteristics of the cavitating jet produced by each nozzle, measurements of the erosion areas, images of the cavitating jet using a high-speed video camera, and measurements of the impingement pressure of the cavitating jet were taken, and correlations between the parameters were obtained. It was found that the nozzle with the largest mass loss was a nozzle with water flow holes near to the throat outlet and a long guide pipe (LGP). The mass loss was 2.5 times that of the previously reported optimum geometry nozzle. Very high correlations were obtained between the mass loss, the inner diameter of the annular erosion area, the impingement pressure measured at the same standoff distance and the cavitation cloud lifetime. Based on these results and the images of the cavitating jets taken with the high-speed video camera, a new cavitating jet progression process is proposed.
AB - It is known that the geometry of the nozzle has a great effect on the aggressive intensity of a cavitating jet. In previous reports, various nozzle geometries were proposed, and improvements made to the aggressive intensity were reported. However, no detailed description of the reasons why the aggressive intensity is improved by these various geometries was given. In this study, we conducted erosion tests on pure aluminum Japanese Industrial Standards JIS A1050P using 11 different nozzles with different geometries downstream from the throat outlet in order to understand the effects of the nozzle geometry on the aggressive intensity. In addition, in order to investigate the characteristics of the cavitating jet produced by each nozzle, measurements of the erosion areas, images of the cavitating jet using a high-speed video camera, and measurements of the impingement pressure of the cavitating jet were taken, and correlations between the parameters were obtained. It was found that the nozzle with the largest mass loss was a nozzle with water flow holes near to the throat outlet and a long guide pipe (LGP). The mass loss was 2.5 times that of the previously reported optimum geometry nozzle. Very high correlations were obtained between the mass loss, the inner diameter of the annular erosion area, the impingement pressure measured at the same standoff distance and the cavitation cloud lifetime. Based on these results and the images of the cavitating jets taken with the high-speed video camera, a new cavitating jet progression process is proposed.
UR - http://www.scopus.com/inward/record.url?scp=85095975805&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85095975805&partnerID=8YFLogxK
U2 - 10.1115/1.4048683
DO - 10.1115/1.4048683
M3 - Article
AN - SCOPUS:85095975805
VL - 143
JO - Journal of Fluids Engineering, Transactions of the ASME
JF - Journal of Fluids Engineering, Transactions of the ASME
SN - 0098-2202
IS - 3
M1 - 031201
ER -