Enhancement of proton transport in an oriented polypeptide thin film

Yuki Nagao, Jun Matsui, Takashi Abe, Hirotsugu Hiramatsu, Hitoshi Yamamoto, Tokuji Miyashita, Noriko Sata, Hiroo Yugami

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Proton transport properties of a partially protonated poly(aspartic acid)/sodium polyaspartate (P-Asp) were investigated. A remarkable enhancement of proton conductivity has been achieved in the thin film. Proton conductivity of 60-nm-thick thin film prepared on MgO(100) substrate was 3.4 × 10 -3 S cm-1 at 298 K. The electrical conductivity of the oriented thin film was 1 order of magnitude higher than the bulk specimen, and the activation energies for the proton conductivity were 0.34 eV for the oriented thin film and 0.65 eV for the pelletized sample, respectively. This enhancement of the proton transport is attributable to the highly oriented structure on MgO(100) substrate. This result proposes great potential for a new strategy to produce a highly proton-conductive material using the concept of an oriented thin film structure without strong acid groups.

Original languageEnglish
Pages (from-to)6798-6804
Number of pages7
JournalLangmuir
Volume29
Issue number23
DOIs
Publication statusPublished - 2013 Jun 11

ASJC Scopus subject areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Enhancement of proton transport in an oriented polypeptide thin film'. Together they form a unique fingerprint.

Cite this