Enhancement of electron and hole effective masses in back-gated GaAs Alx Ga1-x As quantum wells

S. Nomura, M. Yamaguchi, T. Akazaki, H. Tamura, T. Maruyama, S. Miyashita, Y. Hirayama

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Both the electron and the optically created hole effective masses are found to be density dependent in a two-dimensional electron system of a GaAs Al0.33 Ga0.67 As back-gated quantum well by magnetophotoluminescence spectroscopy. We show that the density-dependent electron effective mass increases with a decrease in the electron density (ns) to ns <1× 1011 cm-2. It is found that the electron effective masses determined from the lowest and the second Landau levels are larger than those from the higher Landau levels. The hole effective mass is found to increase with a decrease in ns and the hole is found to localize at ns <3× 1010 cm-2. We observe an upward convex curve of the photoluminescence peak energy at 2<ν<3 depending on the electron-hole distance divided by the magnetic length. These results clearly show the important roles of both electron-electron and electron-hole interactions in the recombination of a valence hole with a high-quality two-dimensional electron system.

Original languageEnglish
Article number201306
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume76
Issue number20
DOIs
Publication statusPublished - 2007 Nov 16

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Enhancement of electron and hole effective masses in back-gated GaAs Alx Ga1-x As quantum wells'. Together they form a unique fingerprint.

  • Cite this