Enhanced photogalvanic current in topological insulators via Fermi energy tuning

Ken N. Okada, Naoki Ogawa, Ryutaro Yoshimi, Atsushi Tsukazaki, Kei S. Takahashi, Masashi Kawasaki, Yoshinori Tokura

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

We achieve the enhancement of the circular photogalvanic effect arising from the photoinjection of spins in topological insulator thin films by tuning the Fermi level (EF). A series of (Bi1-xSbx)2Te3 thin films were tailored so that the Fermi energy ranges above 0.34 eV to below 0.29 eV of the Dirac point, i.e., from the bulk conduction band bottom to the valence band top through the bulk in-gap surface-Dirac cone. The circular photogalvanic current, indicating a flow of spin-polarized surface-Dirac electrons, shows a pronounced peak when the EF is set near the Dirac point and is also correlated with the carrier mobility. Our observation reveals that there are substantial scatterings between the surface-Dirac and bulk state electrons in the generation process of spin-polarized photocurrent, which can be avoided by designing the electronic structure in topological insulators.

Original languageEnglish
Article number081403
JournalPhysical Review B
Volume93
Issue number8
DOIs
Publication statusPublished - 2016 Feb 5

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Enhanced photogalvanic current in topological insulators via Fermi energy tuning'. Together they form a unique fingerprint.

Cite this