Enhanced gyrotropic birefringence and natural optical activity on electromagnon resonance in a helimagnet

S. Iguchi, R. Masuda, S. Seki, Y. Tokura, Y. Takahashi

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Spontaneous symmetry breaking in crystalline solid often produces exotic nonreciprocal phenomena. As one such example, the unconventional optical rotation with nonreciprocity, which is termed gyrotropic birefringence, is expected to emerge from the magnetoelectric coupling. However, the fundamental nature of gyrotropic birefringence remains to be examined. Here w`e demonstrate the gyrotropic birefringence enhanced by the dynamical magnetoelectric coupling on the electrically active magnon resonance, i.e. electromagnon, in a multiferroic helimagnet. The helical spin order having both polarity and chirality is found to cause the giant gyrotropic birefringence in addition to the conventional gyrotropy, i.e. natural optical activity. It is demonstrated that the optical rotation of gyrotropic birefringence can be viewed as the nonreciprocal rotation of the optical principal axes, while the crystallographic and magnetic anisotropies are intact. The independent control of the nonreciprocal linear (gyrotropic birefringence) and circular (natural optical activity) birefringence/dichroism paves a way for the optically active devices.

Original languageEnglish
Article number6674
JournalNature communications
Issue number1
Publication statusPublished - 2021 Dec
Externally publishedYes

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • General
  • Physics and Astronomy(all)


Dive into the research topics of 'Enhanced gyrotropic birefringence and natural optical activity on electromagnon resonance in a helimagnet'. Together they form a unique fingerprint.

Cite this