Emergence of spin-orbit coupled ferromagnetic surface state derived from Zak phase in a nonmagnetic insulator FeSi

Yusuke Ohtsuka, Naoya Kanazawa, Motoaki Hirayama, Akira Matsui, Takuya Nomoto, Ryotaro Arita, Taro Nakajima, Takayasu Hanashima, Victor Ukleev, Hiroyuki Aoki, Masataka Mogi, Kohei Fujiwara, Atsushi Tsukazaki, Masakazu Ichikawa, Masashi Kawasaki, Yoshinori Tokura

Research output: Contribution to journalArticlepeer-review


FeSi is a nonmagnetic narrow-gap insulator, exhibiting peculiar charge and spin dynamics beyond a simple band structure picture. Those unusual features have been attracting renewed attention from topological aspects. Although the surface conduction was demonstrated according to size-dependent resistivity in bulk crystals, its topological characteristics and consequent electromagnetic responses remain elusive. Here, we demonstrate an inherent surface ferromagnetic-metal state of FeSi thin films and its strong spin-orbit coupling (SOC) properties through multiple characterizations of two-dimensional conductance, magnetization, and spintronic functionality. Terminated covalent bonding orbitals constitute the polar surface state with momentum-dependent spin textures due to Rashba-type spin splitting, as corroborated by unidirectional magnetoresistance measurements and first-principles calculations. As a consequence of the spin-momentum locking, nonequilibrium spin accumulation causes magnetization switching. These surface properties are closely related to the Zak phase of the bulk band topology. Our findings propose another route to explore noble metal-free materials for SOCbased spin manipulation.

Original languageEnglish
Article numbereabj0498
JournalScience Advances
Issue number47
Publication statusPublished - 2021 Nov

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Emergence of spin-orbit coupled ferromagnetic surface state derived from Zak phase in a nonmagnetic insulator FeSi'. Together they form a unique fingerprint.

Cite this