Electronic structure of reduced symmetry peripheral fused-ring-substituted phthalocyanines

Nagao Kobayashi, John Mack, Kazuyuki Ishii, Martin J. Stillman

Research output: Contribution to journalArticle

81 Citations (Scopus)

Abstract

Reduced symmetry phthalocyanines are finding use in an increasing number of industrial applications. A detailed understanding of the electronic structure of the π-system will greatly facilitate the design of new complexes, which fit the specifications required in many of these emerging high technology fields. NMR, electronic absorption, magnetic circular dichroism (MCD), and fluorescence emission and excitation spectra have been recorded for five generic metal phthalocyanine (MPc) derivatives in which additional benzene rings are fused either radially or obliquely onto at least one of the four peripheral benzo groups. The spectroscopy of four radially substituted compounds, zinc mononaphthotribenzotetraazaporphyrine (Zn3B1N), zinc monobenzotrinaphthotetraazaporphyrine (Zn1B3N), and two cis and trans zinc dibenzodinaphthotetraazaporphyrine (Zn2B2N) isomers, is compared to that of the obliquely fused structural isomer of Zn3B1N (Zn3BoN) and the D4h symmetry parent compounds, ZnPc and zinc naphthalocyanine (ZnNc). The selection of ZN(II) as the central metal eliminates the possibility of charge transfer between the metal and ring. None of the complexes studied contain any σ-bonded peripheral substituents. 1H NMR signals of the seven compounds are assigned on the basis of the coupling patterns, integrated proton numbers, and decoupling experiments. The SIMPFIT program was used to perform spectral band deconvolution analyses of absorption and MCD spectra. ZINDO molecular orbital calculations are described, and the optical spectra are assigned on the basis of the MO models that have been developed previously to account for the spectral properties of metal porphyrin (MP(-2)) and metal phthalocyanine (MPc(-2)) complexes.

Original languageEnglish
Pages (from-to)5350-5363
Number of pages14
JournalInorganic chemistry
Volume41
Issue number21
DOIs
Publication statusPublished - 2002 Oct 21

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Electronic structure of reduced symmetry peripheral fused-ring-substituted phthalocyanines'. Together they form a unique fingerprint.

  • Cite this