Electron-phonon matrix elements in single-wall carbon nanotubes

J. Jiang, R. Saito, Ge G. Samsonidze, S. G. Chou, A. Jorio, G. Dresselhaus, M. S. Dresselhaus

Research output: Contribution to journalArticlepeer-review

130 Citations (Scopus)


We have developed the electron-phonon matrix element in single-wall carbon nanotubes by using the extended tight-binding model based on density functional theory. We calculate this matrix element to study the electron-phonon coupling for the radial breathing mode (RBM) and the G-band A symmetry modes of single-wall carbon nanotubes. Three well-defined family patterns are found in the RBM, longitudinal optical (LO) mode and transverse optical (TO) mode. We find that among the RBM, LO, and TO modes, the LO mode has the largest electron-phonon interaction. To study the electron-phonon coupling in the transport properties of metallic nanotubes, we calculate the relaxation time and mean free path in armchair tubes. We find that the LO mode, A1′ mode, and one of the E1′ modes give rise to the dominant contributions to the electron inelastic backscattering by phonons. Especially, the off-site deformation potential gives zero matrix elements for E1′ modes while the on-site deformation potential gives rise to nonzero matrix elements for the two E1′ modes, indicating that the on-site deformation potential plays an important role in explaining the experimentally observed Raman mode around 2450cm-1 in carbon.

Original languageEnglish
Article number235408
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number23
Publication statusPublished - 2005 Dec 15

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Electron-phonon matrix elements in single-wall carbon nanotubes'. Together they form a unique fingerprint.

Cite this