TY - JOUR
T1 - Electron-impact ionization of the water molecule at large momentum transfer above the double-ionization threshold
AU - Jones, D. B.
AU - Yamazaki, Masakazu
AU - Watanabe, N.
AU - Takahashi, M.
PY - 2011/1/14
Y1 - 2011/1/14
N2 - The single and double ionization of the water molecule at large momentum transfer has been studied using a combination of (e,2e) and (e,3-1e) spectroscopy, with the binding energy spectrum being measured from 0 to 100 eV. The experiment has been performed in the symmetric noncoplanar geometry at an incident electron energy of 2055 eV. In this way we have achieved a large momentum transfer of 9 a.u. In particular, we present an observation of a relatively intense band at around 58 eV. Symmetry-adapted cluster configuration interaction (SAC-CI) general-R calculations for single ionization indicate that the observed band is at least partly generated by a cluster of satellites with small intensities, which predominantly belong to states possessing 2A 1 symmetry originating from the mixing of the (2a1)⊃-1 state with two electron processes. Nevertheless, it has been found that the entire spectrum above the lowest double-ionization threshold cannot be understood, even qualitatively, with the SAC-CI calculations. This result suggests that the (e,3-1e) double-ionization processes have a significant contribution to the observations.
AB - The single and double ionization of the water molecule at large momentum transfer has been studied using a combination of (e,2e) and (e,3-1e) spectroscopy, with the binding energy spectrum being measured from 0 to 100 eV. The experiment has been performed in the symmetric noncoplanar geometry at an incident electron energy of 2055 eV. In this way we have achieved a large momentum transfer of 9 a.u. In particular, we present an observation of a relatively intense band at around 58 eV. Symmetry-adapted cluster configuration interaction (SAC-CI) general-R calculations for single ionization indicate that the observed band is at least partly generated by a cluster of satellites with small intensities, which predominantly belong to states possessing 2A 1 symmetry originating from the mixing of the (2a1)⊃-1 state with two electron processes. Nevertheless, it has been found that the entire spectrum above the lowest double-ionization threshold cannot be understood, even qualitatively, with the SAC-CI calculations. This result suggests that the (e,3-1e) double-ionization processes have a significant contribution to the observations.
UR - http://www.scopus.com/inward/record.url?scp=78651444163&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78651444163&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.83.012704
DO - 10.1103/PhysRevA.83.012704
M3 - Article
AN - SCOPUS:78651444163
VL - 83
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
SN - 1050-2947
IS - 1
M1 - 012704
ER -