Electron-impact ionization of the water molecule at large momentum transfer above the double-ionization threshold

D. B. Jones, M. Yamazaki, N. Watanabe, M. Takahashi

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The single and double ionization of the water molecule at large momentum transfer has been studied using a combination of (e,2e) and (e,3-1e) spectroscopy, with the binding energy spectrum being measured from 0 to 100 eV. The experiment has been performed in the symmetric noncoplanar geometry at an incident electron energy of 2055 eV. In this way we have achieved a large momentum transfer of 9 a.u. In particular, we present an observation of a relatively intense band at around 58 eV. Symmetry-adapted cluster configuration interaction (SAC-CI) general-R calculations for single ionization indicate that the observed band is at least partly generated by a cluster of satellites with small intensities, which predominantly belong to states possessing 2A 1 symmetry originating from the mixing of the (2a1)⊃-1 state with two electron processes. Nevertheless, it has been found that the entire spectrum above the lowest double-ionization threshold cannot be understood, even qualitatively, with the SAC-CI calculations. This result suggests that the (e,3-1e) double-ionization processes have a significant contribution to the observations.

Original languageEnglish
Article number012704
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume83
Issue number1
DOIs
Publication statusPublished - 2011 Jan 14

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'Electron-impact ionization of the water molecule at large momentum transfer above the double-ionization threshold'. Together they form a unique fingerprint.

Cite this