TY - JOUR
T1 - Electrical properties and microstructure of ternary Ge/Ti/Al ohmic contacts to p-type 4H-SiC
AU - Tsukimoto, S.
AU - Sakai, T.
AU - Murakami, Masanori
N1 - Funding Information:
This work was partially supported by a grant-in-aid for Scientific Research from the Ministry of Education (Grant No. 15206069).
PY - 2004/11/1
Y1 - 2004/11/1
N2 - The high-power SiC devices require ohmic contact materials, which are prepared by annealing at temperatures lower than 800°C. Recently, we demonstrated in our previous paper [J. Appl. Phys. 95, 2187 (2004)] that an addition of a small amount of Ge to the conventional binary Ti/Al contacts reduced the ohmic contact formation temperature by about 500°C, and this ternary contacts yielded a specific contact resistance of approximately 1 × 10-4 ω cm2 after annealing at a temperature as low as 600°C. In this paper, the electrical properties and the microstructures of the Ge/Ti/Al contacts (where a slash "/" indicates the deposition sequence) were investigated by current-voltage measurements and transmission electron microscopy observations, respectively, in order to understand the ohmic contact formation mechanism. Ti3SiC2 compound layers (which were previously observed at the metal/SiC interface in the Ti/Al ohmic contacts after annealing at temperatures higher than 1000°C) were observed to grow epitaxially on the SiC surface after annealing at temperatures as low as 600°C. The Ti3SiC2 layers were believed to act as a p-type intermediate semiconductor layer, which played a key role to reduce the Schottky barrier height at the contacting metal/SiC interface. Further reduction of the contact resistances of the Ge/Ti/Al contacts would be achieved by increasing the coverage of the Ti3SiC 2 layers on the SiC surface.
AB - The high-power SiC devices require ohmic contact materials, which are prepared by annealing at temperatures lower than 800°C. Recently, we demonstrated in our previous paper [J. Appl. Phys. 95, 2187 (2004)] that an addition of a small amount of Ge to the conventional binary Ti/Al contacts reduced the ohmic contact formation temperature by about 500°C, and this ternary contacts yielded a specific contact resistance of approximately 1 × 10-4 ω cm2 after annealing at a temperature as low as 600°C. In this paper, the electrical properties and the microstructures of the Ge/Ti/Al contacts (where a slash "/" indicates the deposition sequence) were investigated by current-voltage measurements and transmission electron microscopy observations, respectively, in order to understand the ohmic contact formation mechanism. Ti3SiC2 compound layers (which were previously observed at the metal/SiC interface in the Ti/Al ohmic contacts after annealing at temperatures higher than 1000°C) were observed to grow epitaxially on the SiC surface after annealing at temperatures as low as 600°C. The Ti3SiC2 layers were believed to act as a p-type intermediate semiconductor layer, which played a key role to reduce the Schottky barrier height at the contacting metal/SiC interface. Further reduction of the contact resistances of the Ge/Ti/Al contacts would be achieved by increasing the coverage of the Ti3SiC 2 layers on the SiC surface.
UR - http://www.scopus.com/inward/record.url?scp=9744236572&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=9744236572&partnerID=8YFLogxK
U2 - 10.1063/1.1797546
DO - 10.1063/1.1797546
M3 - Article
AN - SCOPUS:9744236572
VL - 96
SP - 4976
EP - 4981
JO - Journal of Applied Physics
JF - Journal of Applied Physics
SN - 0021-8979
IS - 9
ER -