Electrical properties and microstructure of ternary Ge/Ti/Al ohmic contacts to p-type 4H-SiC

S. Tsukimoto, T. Sakai, Masanori Murakami

    Research output: Contribution to journalArticlepeer-review

    23 Citations (Scopus)

    Abstract

    The high-power SiC devices require ohmic contact materials, which are prepared by annealing at temperatures lower than 800°C. Recently, we demonstrated in our previous paper [J. Appl. Phys. 95, 2187 (2004)] that an addition of a small amount of Ge to the conventional binary Ti/Al contacts reduced the ohmic contact formation temperature by about 500°C, and this ternary contacts yielded a specific contact resistance of approximately 1 × 10-4 ω cm2 after annealing at a temperature as low as 600°C. In this paper, the electrical properties and the microstructures of the Ge/Ti/Al contacts (where a slash "/" indicates the deposition sequence) were investigated by current-voltage measurements and transmission electron microscopy observations, respectively, in order to understand the ohmic contact formation mechanism. Ti3SiC2 compound layers (which were previously observed at the metal/SiC interface in the Ti/Al ohmic contacts after annealing at temperatures higher than 1000°C) were observed to grow epitaxially on the SiC surface after annealing at temperatures as low as 600°C. The Ti3SiC2 layers were believed to act as a p-type intermediate semiconductor layer, which played a key role to reduce the Schottky barrier height at the contacting metal/SiC interface. Further reduction of the contact resistances of the Ge/Ti/Al contacts would be achieved by increasing the coverage of the Ti3SiC 2 layers on the SiC surface.

    Original languageEnglish
    Pages (from-to)4976-4981
    Number of pages6
    JournalJournal of Applied Physics
    Volume96
    Issue number9
    DOIs
    Publication statusPublished - 2004 Nov 1

    ASJC Scopus subject areas

    • Physics and Astronomy(all)

    Fingerprint

    Dive into the research topics of 'Electrical properties and microstructure of ternary Ge/Ti/Al ohmic contacts to p-type 4H-SiC'. Together they form a unique fingerprint.

    Cite this