Electrical properties and colossal electroresistance of heteroepitaxial SrRu O3/Sr Ti1-x Nbx O3 (0.0002≤x≤0.02) Schottky junctions

T. Fujii, M. Kawasaki, A. Sawa, Yoshiyuki Kawazoe, H. Akoh, Y. Tokura

Research output: Contribution to journalArticle

175 Citations (Scopus)

Abstract

We investigated the electrical properties of heteroepitaxial oxide Schottky junctions, SrRu O3/Sr Ti1-x Nbx O3 (0.0002≤x≤0.02). The overall features agree with those of a conventional semiconductor Schottky junction, as exemplified by the rectifying current (I) -voltage (V) characteristics with linear log I-V relationship under forward bias and the capacitance (C)-V characteristics with linear 1/C2 -V relationship under reverse bias. The x dependence of the junction parameters, such as barrier height, built-in potential, and depletion layer width, can be analyzed by taking into account the band-gap narrowing due to degeneration, as well as the bias-dependent dielectric constant of depleted SrTi O3. All junctions, except for the most heavily doped (x=0.02) one, show hysteretic I-V characteristics with a colossal electroresistance (CER) effect, where forward (reverse) bias stress reduces (enhances) the junction resistance. The x dependence of the CER effect and the absence of hysteresis in the C-V relationship suggest that the resistance switching in Schottky junctions comes from the change in conductance through additional tunneling paths rather than the change in barrier potential profile. Electron charging in or discharging from a self-trap depending on the bias polarity may account for the nonvolatility of the CER effect. This model is supported by the fact that the CER effect is completely suppressed in interface-engineered junctions with a SrRu O3/2-nm -thick X/Sr Ti0.99 Nb0.01 O3 structure, where X is either pristine SrTi O3 or very heavily electron-doped La0.25 Sr0.75 Ti O3.

Original languageEnglish
Article number165101
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume75
Issue number16
DOIs
Publication statusPublished - 2007 Apr 2

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Electrical properties and colossal electroresistance of heteroepitaxial SrRu O3/Sr Ti1-x Nbx O3 (0.0002≤x≤0.02) Schottky junctions'. Together they form a unique fingerprint.

  • Cite this