Electrical, magnetic, and thermal properties of the single-grain Ag 42In42Yb16 icosahedral quasicrystal: Experiment and modeling

M. Bobnar, S. Vrtnik, Z. Jagličić, M. Wencka, Can Cui, An Pang Tsai, J. Dolinšek

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)

    Abstract

    We have investigated the anisotropy of physical properties (the magnetic susceptibility, the electrical resistivity, the thermoelectric power, the Hall coefficient, and the thermal conductivity) of single-grain icosahedral i-Ag 42In42Yb16 quasicrystal along the two-, three-, and fivefold symmetry directions of the crystallographic structure. The specific heat, being a scalar quantity, was determined as well. The symmetry analysis predicts that the tensorial physical properties reduce to scalars for the ideal icosahedral symmetry. The experiments have shown that the anisotropy of the electronic transport coefficients of i-Ag42In 42Yb16 is either small enough to be considered within the range of the experimental uncertainty (the electrical resistivity and the thermal conductivity) or negligible (the Seebeck and the Hall coefficients). The anisotropy of the magnetization and magnetic susceptibility was also found small, originating from different Yb3+ magnetic fractions (of the order 10-3 of all Yb atoms) determined along the three symmetry directions. Our experimental results support the consideration that perfect icosahedral quasicrystals should be isotropic solids regarding their physical properties, unlike decagonal quasicrystals that are strongly anisotropic. Theoretical reproduction of the temperature-dependent electron transport coefficients of i-Ag42In42Yb16 by a spectral conductivity model was another aim of this paper.

    Original languageEnglish
    Article number134205
    JournalPhysical Review B - Condensed Matter and Materials Physics
    Volume84
    Issue number13
    DOIs
    Publication statusPublished - 2011 Oct 17

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Condensed Matter Physics

    Fingerprint

    Dive into the research topics of 'Electrical, magnetic, and thermal properties of the single-grain Ag 42In42Yb16 icosahedral quasicrystal: Experiment and modeling'. Together they form a unique fingerprint.

    Cite this