Effects of the liquid phase on the high-temperature tensile ductility: From embrittlement to superplasticity

Junichi Koike, K. Miki, K. Maruyama, H. Oikawa

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

Inclusions of liquid phase are generally considered to cause liquid-metal embrittlement. On the other hand, there have been some reports implying the enhancement of tensile elongation by liquid inclusions. In this paper, the possibility of elongation enhancement by liquid and its underlying mechanism were investigated in a model binary system of Al-Bi and a composite of (A1 Mg)- Si3N4Clear evidence of elongation enhancement was observed in the Al-Bi alloy. Liquid inclusions of Bi were found to assist stress accommodation processes and to delay cavitation failure. In the (Al-Mg)-Si3N4composite, a close correlation was found between the incipient melting temperature and an optimum temperature for high-strain-rate superplasticity. The liquid phase was observed along grain boundaries and interfaces of the composite, suggesting a similar stress accommodation process to that of the Al-Bi alloy. The interface microstructure was also studied by high-resolution transmission electron microscopy to understand the detailed mechanism of high-strain-rate superplasticity.

Original languageEnglish
Pages (from-to)599-614
Number of pages16
JournalPhilosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties
Volume78
Issue number3
DOIs
Publication statusPublished - 1998 Jan 1

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Materials Science(all)
  • Condensed Matter Physics
  • Physics and Astronomy (miscellaneous)
  • Metals and Alloys

Fingerprint

Dive into the research topics of 'Effects of the liquid phase on the high-temperature tensile ductility: From embrittlement to superplasticity'. Together they form a unique fingerprint.

Cite this