Effects of OH concentration and temperature on NO emission characteristics of turbulent non-premixed CH 4 /NH 3 /air flames in a two-stage gas turbine like combustor at high pressure

Kapuruge Don Kunkuma Amila Somarathne, Ekenechukwu C. Okafor, Daiki Sugawara, Akihiro Hayakawa, Hideaki Kobayashi

Research output: Contribution to journalArticlepeer-review

Abstract

This study examined the effects of OH concentration and temperature on the NO emission characteristics of turbulent, non-premixed methane (CH 4 )/ammonia (NH 3 )/air swirl flames in two-stage combustors at high pressure. Emission data were obtained using large-eddy simulations with a finite-rate chemistry method from model flames based on the energy fraction of NH 3 ( E NH 3 ) in CH 4 /NH 3 mixtures. Although NO emissions at the combustor exit were found to be significantly higher than those generated by CH 4 /air and NH 3 /air flames under both lean and stoichiometric primary zone conditions, these emissions could be lowered to approximately 300 ppm by employing far-rich equivalence ratios ( Φ) of 1.3 to 1.4 in the primary zone. This effect was possibly due to the lower OH concentrations under far-rich conditions. An analysis of local flame characteristics using a newly developed mixture fraction equation for CH 4 /NH 3 /air flames indicated that the local temperature and NO and OH concentration distributions with local Φ were qualitatively similar to those in NH 3 /air flames. That is, the maximum local NO and OH concentrations appeared at local Φ of 0.9, although the maximum temperature was observed at local Φ of 1.0. Both the temperature and OH concentration were found to gradually decrease with the partial replacement of CH 4 with NH 3 . Consequently, NO emissions from CH 4 /NH 3 flames were maximized at E NH 3 in the range of 20% to 30%, after which the emissions decreased. Above 2100 K, the NO emissions from CH 4 /NH 3 flames increased exponentially with temperature, which was not observed in NH 3 /air flames because of the lower flame temperatures in the latter. But, the maximum NO concentration in CH 4 /NH 3 flames was occurred at a temperature slightly below the maximum temperature, just as in NH 3 /air flames. The apparent exponential increase in NO emissions from CH 4 /NH 3 flames is attributed to a similar trend in the OH concentration at high temperatures.

Original languageEnglish
JournalProceedings of the Combustion Institute
DOIs
Publication statusAccepted/In press - 2020

Keywords

  • Ammonia
  • Co-firing
  • Emission
  • Methane
  • Two-stage combustion

ASJC Scopus subject areas

  • Chemical Engineering(all)
  • Mechanical Engineering
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Effects of OH concentration and temperature on NO emission characteristics of turbulent non-premixed CH <sub>4</sub> /NH <sub>3</sub> /air flames in a two-stage gas turbine like combustor at high pressure'. Together they form a unique fingerprint.

Cite this